Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 135543, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278439

RESUMEN

Rosa roxburghii Tratt (R. roxburghii), a unique ethnic medicine native to southwest China, is classified as both medicinal and culinary, offering a multitude of health benefits. Traditionally, it is used to eliminate diet and relieve diarrhea, nourish Yin and invigorate the spleen, dispel wind and dampness, enhance immunity, and promote the healthy development of the body. Furthermore, it serves as a remedy for ailments such as scurvy, night blindness, cancer, hyperlipidemia, hyperglycemia, and hypertension. R. roxburghii contains many nutritious and active ingredients, including proteins, vitamin C, inorganic salts, essential amino acids, polysaccharides, phenols, triterpenes, organic acids, and superoxide dismutase (SOD). Among them, polysaccharides stand out as pivotal bioactive components, comprising mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose, among others. R. roxburghii polysaccharides (RTFPs) present diverse biological activities, including antioxidant, anti-fatigue, hypoglycemic, anti-tumor, immune modulation, relief from ulcerative colitis, protection of neural stem cells from glutamate damage, and improvement of intestinal micro-ecology. Due to its distinctive bioactivity, the research on RTFPs is booming. While numerous extraction and purification techniques have successfully isolated and characterized RTFPs, comprehensive understanding of their chemical structure, mechanisms, structure-activity relationships, safety profiles, and practical applications remains limited. This knowledge gap hampers their optimal utilization and development. In response, this research offers an overview of extraction, purification, structure characteristics, biological activities, structure-activity relationships, and pharmaceutical application of RTFPs. Additionally, this research not only lays a theoretical basis for the comprehensive exploration and exploitation of R. roxburghii and its polysaccharide resources but also offers extensive knowledge and insights into the development and application of RTFPs as a novel functional foods and drugs.

2.
Int J Biol Macromol ; 276(Pt 1): 133614, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960222

RESUMEN

The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.


Asunto(s)
Polisacáridos , Rhodiola , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Peso Molecular , Monosacáridos/análisis , Monosacáridos/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Rhodiola/química , Relación Estructura-Actividad
3.
ACS Appl Mater Interfaces ; 16(28): 36413-36422, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968574

RESUMEN

Bismuth oxide (Bi2O3) materials are considered as great promising anodes for aqueous batteries on account of the high capacity as well as wide potential plateau. Nevertheless, the low conductivity and severe volumetric change of Bi2O3 in the course of cycling are the main limiting factors for their application in energy-storage systems. Herein, we propose and design unique hierarchical heterostructures constructed by Bi2O3 and Bi2S3 nanosheets (NSs) manufactured immediately on the surface of carbon nanotube fibers (CNTFs). The Bi2O3-Bi2S3 (BO-BS) exhibits enhanced conductivity and increased stability in comparison with pure Bi2O3 and Bi2S3. The BO-BS NSs/CNTF electrode indicates exceptional rate capability and cycling stability, while creating a high reversible capacity of 0.68 mAh cm-2 at 4 mA cm-2, as anticipated. Additionally, the quasi-solid-state fibrous aqueous Ni//Bi battery that was built with the BO-BS NSs/CNTF anode delivers an exceptional cycling stability of 52.7% capacity retention after 4000 cycles at 80 mA cm-2, an ultrahigh capacity of 0.35 mAh cm-2 at 4 mA cm-2, and a high energy density of 340.1 mWh cm-3 at 880 mW cm-3. This work demonstrates the potential of constructing hierarchical heterostructures of bismuth-based materials for high-performance aqueous Ni//Bi batteries and other energy-storage devices.

4.
Small ; 20(28): e2311851, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312088

RESUMEN

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2O3/Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2O3/Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2. Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1.

5.
ACS Appl Mater Interfaces ; 15(19): 23217-23225, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37146292

RESUMEN

Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA