Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(1): e85173, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465498

RESUMEN

Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r) and D[perpendicular](r) are independent of the colloidal area fraction n when n < 0.3, which indicates that the hydrodynamic interactions(HIs) among the particles are dominated by HIs through the surrounding fluid for small n. For high area fraction n > 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.


Asunto(s)
Coloides/química , Difusión , Hidrodinámica , Programas Informáticos
2.
Biophys J ; 90(1): 173-82, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16227507

RESUMEN

A fragment of RyR1 (amino acids 4064-4210) is predicted to fold to at least one lobe of calmodulin and to bind Ca(2+). This fragment of RyR1 (R4064-4210) was subcloned, expressed, refolded, and purified. Consistent with the predicted folding pattern, R4064-4210 was found to bind two molecules of Ca(2+) and undergo a structural change upon binding Ca(2+) that exposes hydrophobic amino acids. R4064-4210 also binds to RyR1, the L-type Ca(2+) channel (Cav(1.1)), and several synthetic calmodulin binding peptides. Both R4064-4210 and a peptide representing the calmodulin-binding region of RyR1 (R3614-3643) alter the Ca(2+) dependence of ((3)H)ryanodine binding to RyR1, suggesting that they may both be interfering with an intramolecular interaction between amino acids 4064-4210 and amino acids 3614-3643 in the native RyR1 to alter or regulate the response of the channel to changes in Ca(2+) concentration. The finding that a domain within RyR1 binds Ca(2+) and interacts with calmodulin-binding motifs may provide insights into the mechanism for calcium- and calmodulin-dependent regulation of this channel and perhaps for its regulation by the L-type Ca(2+) channel.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Sitios de Unión , Calcio/química , Canales de Calcio Tipo L/química , Dicroismo Circular , ADN/química , Escherichia coli/metabolismo , Imagenología Tridimensional , Conformación Molecular , Datos de Secuencia Molecular , Paramecium , Péptidos/química , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , Rianodina/química , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia
3.
J Appl Physiol (1985) ; 96(5): 1619-25, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14672973

RESUMEN

The purpose of this study was to determine whether there are alterations in the dihydropyridine and/or ryanodine receptors that might explain the excitation-contraction uncoupling associated with eccentric contraction-induced skeletal muscle injury. The left anterior crural muscles (i.e., tibialis anterior, extensor digitorum longus, and extensor hallucis longus) of mice were injured in vivo by 150 eccentric contractions. Peak isometric tetanic torque of the anterior crural muscles was reduced approximately 45% immediately and 3 days after the eccentric contractions. Partial restoration of peak isometric tetanic and subtetanic forces of injured extensor digitorum longus muscles by 10 mM caffeine indicated the presence of excitation-contraction uncoupling. Scatchard analysis of [3H]ryanodine binding indicated that the number of ryanodine receptor binding sites was not altered immediately postinjury but decreased 16% 3 days later. Dihydropyridine receptor binding sites increased approximately 20% immediately after and were elevated to the same extent 3 days after the injury protocol. Muscle injury did not alter the sensitivity of either receptor. These data suggest that a loss or altered sensitivity of the dihydropyridine and ryanodine receptors does not contribute to the excitation-contraction uncoupling immediately after contraction-induced muscle injury. We also concluded that the loss in ryanodine receptors 3 days after injury is not the primary cause of excitation-contraction uncoupling at that time.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Contracción Muscular , Músculo Esquelético/lesiones , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Sitios de Unión , Cafeína/farmacología , Femenino , Contracción Isométrica , Isradipino/metabolismo , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/efectos de los fármacos , Tarso Animal , Torque , Heridas y Lesiones/metabolismo , Heridas y Lesiones/fisiopatología
4.
Biophys J ; 85(3): 1538-47, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12944271

RESUMEN

The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.


Asunto(s)
Canales de Calcio Tipo L/química , Calcio/química , Calmodulina/química , Alanina/química , Animales , Sitios de Unión , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Calmodulina/genética , Bovinos , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Glutamina/química , Isoleucina/química , Mutación , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
5.
J Biol Chem ; 278(10): 8348-55, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12509414

RESUMEN

Both apocalmodulin (Ca(2+)-free calmodulin) and Ca(2+)-calmodulin bind to and regulate the activity of skeletal muscle Ca(2+) release channel (ryanodine receptor, RYR1). Both forms of calmodulin protect sites after amino acids 3630 and 3637 on RYR1 from trypsin cleavage. Only apocalmodulin protects sites after amino acids 1982 and 1999 from trypsin cleavage. Ca(2+)-calmodulin and apocalmodulin both bind to two different synthetic peptides representing amino acids 3614-3643 and 1975-1999 of RYR1, but Ca(2+)-calmodulin has a higher affinity than apocalmodulin for both peptides. Cysteine 3635, within the 3614-3643 sequence of RYR1, can form a disulfide bond with a cysteine on an adjacent subunit within the RYR1 tetramer. The second cysteine is now shown to be between amino acids 2000 and 2401. The close proximity of the cysteines forming the intersubunit disulfide to the two sites that bind calmodulin suggests that calmodulin is binding at a site of intersubunit contact, perhaps with one lobe bound between amino acids 3614 and 3643 on one subunit and the second lobe bound between amino acids 1975 and 1999 on an adjacent subunit. This model is consistent with the finding that Ca(2+)-calmodulin and apocalmodulin each bind to a single site per RYR1 subunit (Rodney, G. G., Williams, B. Y., Strasburg, G. M., Beckingham, K., and Hamilton, S. L. (2000) Biochemistry 39, 7807-7812).


Asunto(s)
Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Hidrólisis , Datos de Secuencia Molecular , Conejos , Canal Liberador de Calcio Receptor de Rianodina/química , Tripsina/metabolismo
6.
J Biol Chem ; 277(43): 40862-70, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12185083

RESUMEN

Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.


Asunto(s)
Calmodulina/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Calmodulina/química , Electroforesis en Gel de Poliacrilamida , Músculo Esquelético/metabolismo , Estructura Secundaria de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA