Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21872, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300076

RESUMEN

In modern industrial production, permanent magnet motors are an indispensable part of industrial manufacturing. The quality of the magnetic tiles directly affects the working performance of the permanent magnet motors, making the detection of defects on the surface of magnetic tiles critically important. However, due to the small size of defects on the tile image and the reflectivity of the defective surface, the details of image characteristics are not prominently acquired.These problems bring a lot of difficulties for the recognition of magnetic tile defects. In this paper, a magnetic tile defect detection method is proposed for the probAlems of unclear image features and small defects. First, the image is processed using linear variation to enhance the image detail features. Then, by introducing the inverted bottleneck block structure in MobileNetV2, the Attention Parallel Residual Convolution Block (APR) is proposed, and the Lightweight Parallel Attention Residual Network (LPAR-Net) is built. In APR Block, 7 × 7 convolution is introduced so that the model can extract spatial features from a larger range, and weighted fusion of input images by residual structure. In addition, in this paper, CBAM is improved, split into two parts and inserted into APR Block. Finally, the mainstream image classification models and the LPAR-Net proposed in this paper are used for comparison, respectively. The experimental results show that the method achieves 93.63% accuracy on the adopted dataset, which is better than the existing mainstream image classification network models DenseNet, MobileNet, ConvNext and so on. In addition, this paper introduces a strip steel surface defect dataset and compares it with the above image classification model, which verifies that the detection method proposed in this paper still has strong recognition capability.

2.
Front Plant Sci ; 15: 1420584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166234

RESUMEN

Tomato disease image recognition plays a crucial role in agricultural production. Today, while machine vision methods based on deep learning have achieved some success in disease recognition, they still face several challenges. These include issues such as imbalanced datasets, unclear disease features, small inter-class differences, and large intra-class variations. To address these challenges, this paper proposes a method for classifying and recognizing tomato leaf diseases based on machine vision. First, to enhance the disease feature details in images, a piecewise linear transformation method is used for image enhancement, and oversampling is employed to expand the dataset, compensating for the imbalanced dataset. Next, this paper introduces a convolutional block with a dual attention mechanism called DAC Block, which is used to construct a lightweight model named LDAMNet. The DAC Block innovatively uses Hybrid Channel Attention (HCA) and Coordinate Attention (CSA) to process channel information and spatial information of input images respectively, enhancing the model's feature extraction capabilities. Additionally, this paper proposes a Robust Cross-Entropy (RCE) loss function that is robust to noisy labels, aimed at reducing the impact of noisy labels on the LDAMNet model during training. Experimental results show that this method achieves an average recognition accuracy of 98.71% on the tomato disease dataset, effectively retaining disease information in images and capturing disease areas. Furthermore, the method also demonstrates strong recognition capabilities on rice crop disease datasets, indicating good generalization performance and the ability to function effectively in disease recognition across different crops. The research findings of this paper provide new ideas and methods for the field of crop disease recognition. However, future research needs to further optimize the model's structure and computational efficiency, and validate its application effects in more practical scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA