Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Int J Nanomedicine ; 19: 8949-8970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246424

RESUMEN

Introduction: RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods: The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results: The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion: In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Liposomas , ARN Interferente Pequeño , Animales , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Femenino , Liposomas/química , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Células MCF-7 , Ratones Endogámicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Liberación de Fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Neurooncol Adv ; 6(1): vdae132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220250

RESUMEN

Background: Stereotactic radiosurgery (SRS) for the treatment of brain metastases delivers a high dose of radiation with excellent local control but comes with the risk of radiation necrosis (RN), which can be difficult to distinguish from tumor progression (TP). Magnetization transfer (MT) and chemical exchange saturation transfer (CEST) are promising techniques for distinguishing RN from TP in brain metastases. Previous studies used a 2D continuous-wave (ie, block radiofrequency [RF] saturation) MT/CEST approach. The purpose of this study is to investigate a 3D pulsed saturation MT/CEST approach with perfusion MRI for distinguishing RN from TP in brain metastases. Methods: The study included 73 patients scanned with MT/CEST MRI previously treated with SRS or fractionated SRS who developed enhancing lesions with uncertain diagnoses of RN or TP. Perfusion MRI was acquired in 49 of 73 patients. Clinical outcomes were determined by at least 6 months of follow-up or via pathologic confirmation (in 20% of the lesions). Results: Univariable logistic regression resulted in significant variables of the quantitative MT parameter 1/(RA·T2A), with 5.9 ±â€…2.7 for RN and 6.5 ±â€…2.9 for TP. The highest AUC of 75% was obtained using a multivariable logistic regression model for MT/CEST parameters, which included the CEST parameters of AREXAmide,0.625µT (P = .013), AREXNOE,0.625µT (P = .008), 1/(RA·T2A) (P = .004), and T1 (P = .004). The perfusion rCBV parameter did not reach significance. Conclusions: Pulsed saturation transfer was sufficient for achieving a multivariable AUC of 75% for differentiating between RN and TP in brain metastases, but had lower AUCs compared to previous studies that used a block RF approach.

3.
Food Res Int ; 195: 114964, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277265

RESUMEN

To explore the volatile characteristics of Z. bungeanum fruits during different developmental stages, the dynamical changes of volatile organic compounds (VOCs) were detected by E-nose, GC-MS and GC-IMS, respectively. The results showed that terpenes, alcohols, esters and aldehydes played the important roles in the aroma formation of Z. bungeanum. Meanwhile, these VOCs also exhibited the high abundance levels among five growth stages of Z. bungeanum. According to the analysis of odor activity value (OAV) and relative odor activity value (ROAV), 37 VOCs can be recognized as the important aroma compounds. Thereinto, ß-myrcene and linalool were the most key aroma compounds. Multi-factor analysis exhibited that the combination of GC-MS and GC-IMS was a better strategy to clarify the volatile characteristics comprehensively. Using the above combined VOC datasets, six positively correlated modules and 32 hub VOCs were finally identified by weighted correlation network analysis among five growth stages of Z. bungeanum.


Asunto(s)
Nariz Electrónica , Frutas , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Zanthoxylum , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Frutas/química , Frutas/crecimiento & desarrollo , Zanthoxylum/química , Odorantes/análisis , Monoterpenos Acíclicos/análisis , Terpenos/análisis
4.
Food Chem X ; 23: 101743, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257489

RESUMEN

Black tea is highly favored by consumers worldwide, with enzymatic reactions being recognized as a pivotal factor influencing tea quality. The role of microorganisms in shaping the composition of black tea has emerged as a focus of research due to their involvement in enzyme catalysis and metabolic processes. In this study, full-length amplicon sequencing combined with qPCR more accurately reflected microbial profile, and Pantoea, Pseudomonas, Paucibacter, and Cladosporium were identified as the main microbial genera. Moreover, by comprehensively analyzing color, aroma, and taste components over time in black tea samples, correlations were established between the dominant genus and various quality factors. Notably, peroxidase activity levels, total soluble sugar content, and tea pigments concentration exhibited significant associations with the dominant genus. Consequently, this microbiological perspective facilitated the exploration of driving factors for improving black tea quality while establishing a theoretical foundation for quality control in industrial production.

5.
J Am Chem Soc ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264946

RESUMEN

The ligated boryl radical (LBR) has emerged as a potent tool for activating alkyl halides in radical transformations through halogen-atom transfer (XAT). However, unactivated alkyl chlorides still present an open challenge for this strategy. We herein describe a new activation mode of the LBR for the activation of unactivated alkyl chlorides to construct a C(sp3)-C(sp3) bond. Mechanistic studies reveal that the success of the protocol relies on a radical replacement process between the LBR and unactivated alkyl chloride, forming an alkyl borane intermediate as the alkyl radical precursor. Aided with the additive K3PO4, the alkyl borane then undergoes one-electron oxidation, generating an alkyl radical. The incorporation of the radical replacement activation model to activate unactivated alkyl chlorides significantly enriches LBR chemistry, which has been applied to activate alkyl iodides, alkyl bromides, and activated alkyl chlorides via XAT.

6.
ACS Biomater Sci Eng ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39262329

RESUMEN

Ferroptosis is an appealing cancer therapy strategy based on the H2O2-involved Fenton reaction to produce toxic •OH for lipid peroxidation. However, intracellular H2O2 is easily consumed and results in a deficient Fenton reaction. This obstacle can be overcome by traditional chemotherapeutic drugs for H2O2 supplements. Moreover, a recent work illustrated that dihydroartemisinin (DHA) could promote ferroptosis against tumoral cells, particularly in the presence of ferrous compounds. To achieve combined chemotherapy and ferroptosis, a nanocarrier (TKNPDHA-Fc) was constructed by using thioketal (TK)-bridged paclitaxel prodrug (PEG-TK-PTX) and ferrocene (Fc)-conjugated PEG-Fc, where DHA was encapsulated by a hydrophobic-hydrophobic interaction. Upon cellular uptake, TKNPDHA-Fc could facilitate PTX release through TK breakage under an excess H2O2 microenvironment. Owing to the loss of the hydrophobic PTX component, TKNPDHA-Fc underwent a rapid dissociation for improving DHA to act as a ferroptotic inducer along with Fe supplied from Fc. Moreover, both the chemotherapy-induced reactive oxygen species and the •OH produced from reinforced ferroptosis further stimulated the TK cleavage. The "self-catalytic" loop of TKNPDHA-Fc remarkably improved the antitumor performance in vivo via combined mechanisms, and its tumor inhibition rate reached 78.3%. This work highlights the contribution of ROS-responsive and self-catalytic nanoplatforms for enhancing the potential of combined chemotherapy and ferroptosis for cancer therapy in the future.

7.
Phytomedicine ; 133: 155933, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39121537

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is a progressive and severe respiratory disease for which there is still a lack of satisfactory treatment methods other than lung transplantation. Evening primrose (EP) is widely used in Chinese folk medicinal herbs, especially for the treatment of lung-related diseases. However, the protective effect of evening primrose against PF has yet to be reported. PURPOSE: This study explores the pharmacological effect of EP and its possible active components against PF from the perspectives of lung function, histopathological staining, and molecular biology assays. METHODS: Establishing a rat pulmonary fibrosis model using bleomycin to detect lung function, pathological changes, and collagen deposition. TGF-ß1 was used to establish an in vitro model of PF in BEAS-2B cells, and the active ingredients in evening primrose were screened. Then, the therapeutic effects of 1-Oxohederagenin (C1) and remangilone C (C2) derived from EP were observed in an in vivo model of bleomycin-induced PF, and the differentially expressed genes between the C1 and C2 treatment groups and the model group were screened with transcriptome sequencing. Finally, TGF-ß1-induced damage to HFL1 cell was used to explore the specific mechanisms by which C1 and C2 alleviate PF and the involvement of ß-catenin signaling. RESULTS: Evening primrose extract showed some ameliorative effects on bleomycin-induced PF in rats, manifested as reduced pathological damage and reduced collagen deposition. The chemical components of C1 and C2 potently ameliorated BLM-induced PF in animals and effectively inhibited fibroblast activation by interfering with ß-catenin signaling. CONCLUSION: Evening primrose extract has certain ameliorative effects on PF. In addation, C1 and C2 might be related with the suppression of fibroblast activation by inhibiting ß-catenin signaling.


Asunto(s)
Bleomicina , Modelos Animales de Enfermedad , Oenothera biennis , Fibrosis Pulmonar , beta Catenina , Animales , Humanos , Masculino , Ratas , beta Catenina/metabolismo , Línea Celular , Pulmón/efectos de los fármacos , Pulmón/patología , Oenothera biennis/química , Ácido Oleanólico/análogos & derivados , Extractos Vegetales/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
8.
Plant J ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126292

RESUMEN

Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance. In this study, by a genome-wide phosphorylation analysis, we found that the phosphorylation of BSK1 and OST1 was missing in the rlk902 mutant compared with the wild-type plants, indicating a potential connection between the RLK902-BSK1 module and OST1-mediated stomatal closure. We showed that RLK902 and BSK1 contribute to stomatal immunity, as the stomatal closure induced by the bacterial pathogen Pto DC3000 was impaired in rlk902 and bsk1-1 mutants. Stomatal immunity mediated by RLK902 was dependent on BSK1 phosphorylation at Ser230, a key phosphorylation site for BSK1 functions. Several phosphorylation sites of OST1 were important for RLK902- and BSK1-mediated stomatal immunity. Interestingly, the phosphorylation of Ser171 and Ser175 in OST1 contributed to the stomatal immunity mediated by RLK902 but not by BSK1, while phosphorylation of OST1 at Ser29 and Thr176 residues was critical for BSK1-mediated stomatal immunity. Taken together, these results indicate that RLK902 and BSK1 contribute to disease resistance via OST1-mediated stomatal closure. This work revealed a new function of BSK1 in activating stomatal immunity, and the role of RLK902-BSK1 and OST1 module in regulating pathogen-induced stomatal movement.

9.
ACS Nano ; 18(33): 22431-22443, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39103298

RESUMEN

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.


Asunto(s)
Alendronato , Cristalización , Osteoclastos , Osteogénesis , Osteoporosis , Alendronato/química , Alendronato/farmacología , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Animales , Ratones , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Células RAW 264.7 , Humanos , Sinergismo Farmacológico
10.
Colloids Surf B Biointerfaces ; 243: 114135, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39106630

RESUMEN

Myocardial infarction (MI) leads to substantial cellular necrosis as a consequence of reduced blood flow and oxygen deprivation. Stimulating cardiomyocyte proliferation and angiogenesis can promote functional recovery after cardiac events. In this study, we explored a novel therapeutic strategy for MI by synthesizing a biomimetic nanovesicle (NV). This biomimetic NVs are composed of exosomes sourced from umbilical cord mesenchymal stem cells, which have been loaded with placental growth factors (PLGF) and surface-engineered with a cardiac-targeting peptide (CHP) through covalent bonding, termed Exo-P-C NVs. With the help of the myocardial targeting effect of homing peptides, NVs can be enriched in the MI site, thus improve cardiac regeneration, reduce fibrosis, stimulate cardiomyocyte proliferation, and promote angiogenesis, ultimately resulted in improved cardiac functional recovery. It was demonstrated that Exo-P-C NVs have the potential to offer novel therapeutic strategies for the improvement of cardiac function and management of myocardial infarction.


Asunto(s)
Supervivencia Celular , Infarto del Miocardio , Miocitos Cardíacos , Neovascularización Fisiológica , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/citología , Animales , Neovascularización Fisiológica/efectos de los fármacos , Humanos , Supervivencia Celular/efectos de los fármacos , Factor de Crecimiento Placentario/metabolismo , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Exosomas/metabolismo , Exosomas/química , Ratas , Ratones , Masculino , Células Cultivadas , Propiedades de Superficie
11.
Commun Biol ; 7(1): 952, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107427

RESUMEN

The transition from the swimming larval stage to the settlement stage represents a significant node in the marine sponge developmental process. Previous research has shown that the outer membrane vesicles (OMVs) from the bacterial species Tenacibaculum mesophilum associated with the sponge Tedania sp. influence larval settlement: low concentrations of OMVs increase the attachment rate, whereas high concentrations decrease the attachment rate. Here, by comparing the transcriptomes of sponge larvae in filtered seawater (FSW group) and in FSW supplemented with OMVs (FSW-OMV group), the results indicated that bacterial OMVs affected larval settlement by modulating the expression levels of apoptosis-inducing factor (AIF) in the host. Subsequently, quantitative real-time PCR revealed a decrease in aif expression near the time of settlement (SE) compared to that in the control group. RNA interference (RNAi) was used to target the aif gene, and the rate of larval settlement was significantly reduced, confirming the inhibitory effect of high concentrations of OMVs. Moreover, small RNA (sRNA) sequencing of OMVs revealed the existence of abundant AIF-sRNAs of 30 nt, further suggesting that one pathway for the involvement of sponge-associated bacteria in host development is the transport of OMVs and the direct function of cargo loading.


Asunto(s)
Factor Inductor de la Apoptosis , Larva , Poríferos , Animales , Poríferos/microbiología , Poríferos/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/genética , Larva/microbiología , Larva/metabolismo , Larva/crecimiento & desarrollo , Simbiosis
12.
Ecotoxicol Environ Saf ; 284: 116926, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39205350

RESUMEN

Metal-organic frameworks (MOFs) exhibit high chemical stability and porosity, and have been widely applied in various fields including selective adsorption and separation, sensors, and catalysis. When combined with Fe3O4, they effectively address issues such as aggregation of Fe3O4 particles and the difficulty in recovering MOFs as catalysts. Therefore, in this study, we used a simple solvothermal method as a catalyst to synthesize a high specific surface area magnetic composite Fe3O4@MOF-74, which was used to catalyze the degradation of bisphenol A (BPA) and amino black 10B in wastewater. We activated Na2S2O8 to generate radicals for oxidizing and degrading BPA and amino black 10B. Experimental results showed that at 35 °C, with Fe3O4@MOF-74 (Fe3O4: MOF-74=1:1) concentration of 0.2 g/L and Na2S2O8 concentration of 2 g/L, the catalytic effect is efficient and economical. Meanwhile, removal rates of BPA and amino black 10B exceeded 95.58 % over a broad pH range (pH 3-9). Furthermore, even after multiple cycles of use, Fe3O4@MOF-74 maintained catalytic degradation rates of BPA and amino black 10B above 93.24 % and 95.01 %, respectively. Additionally, in water samples, removal rates of BPA and amino black 10B exceeded 91.55 %. This study provides a new and efficient catalyst material for wastewater treatment, which is expected to play an important role in environmental remediation.

13.
Nucleic Acids Res ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162221

RESUMEN

Pachynema progression contributes to the completion of prophase I. Nevertheless, the regulation of this significant meiotic process remains poorly understood. In this study, we identified a novel testis-specific protein HSF5, which regulates pachynema progression during male meiosis in a manner dependent on chromatin-binding. Deficiency of HSF5 results in meiotic arrest and male infertility, characterized as unconventional pachynema arrested at the mid-to-late stage, with extensive spermatocyte apoptosis. Our scRNA-seq data confirmed consistent expressional alterations of certain driver genes (Sycp1, Msh4, Meiob, etc.) crucial for pachynema progression in Hsf5-/- individuals. HSF5 was revealed to primarily bind to promoter regions of such key divers by CUT&Tag analysis. Also, our results demonstrated that HSF5 biologically interacted with SMARCA5, SMARCA4 and SMARCE1, and it could function as a transcription factor for pachynema progression during meiosis. Therefore, our study underscores the importance of the chromatin-associated HSF5 for the differentiation of spermatocytes, improving the protein regulatory network of the pachynema progression.

14.
Heliyon ; 10(15): e35681, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170217

RESUMEN

Nocardia farcinica is an aerobic gram-positive bacterium that is pathogenic to humans. It usually causes local and adjacent tissues' diseases at the entry of infection (most commonly occur in the lungs, skin, or central nervous system), which can also spread to other organs through the bloodstream such as joints, kidneys, and liver. However, these infections are often seen as opportunistic that occur in immunocompromised patients. Here, we report for the first time two immunocompetent patients lacking evidence of local infections, with multiple lymph node enlargements and fever as main clinical manifestations, finally diagnosed as nocardiosis by Metagenomic Next-Generation Sequencing testing (mNGS) from formalin-fixed and paraffin-embedded (FFPE) lymph node tissue, after all the other standard tests were negative. Both patients recovered after receiving anti-nocardia therapies. These two cases indicates that in healthy population, there may be more potential nocardia infections than we expected. Multiple lymph node enlargements and fever suggest a possibility of nocardiosis, especially in patients with fever of unknown origin (FUO). mNGS detection from FFPE lymph node tissue is an accurate, reliable and traceable method for diagnosis of nocardiosis.

15.
Technol Health Care ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39093087

RESUMEN

BACKGROUND: Knee osteoarthritis is a common degenerative joint disease where a single treatment method often fails to fully alleviate symptoms. Hence, finding effective non-invasive combined treatment approaches is particularly crucial. OBJECTIVE: The efficacy of treating knee osteoarthritis with hip abductors exercise training combined with repetitive transcranial magnetic stimulation was assessed through functional scales and objective evaluation methods. METHODS: In this four-week randomized clinical trial, 160 patients meeting inclusion criteria were randomly assigned 1:1 to group A to receive oral celecoxib and group B to receive a combination of hip abductors exercise training and repeated transcranial magnetic stimulation. The primary outcome was the western Ontario and McMaster universities osteoarthritis index. The secondary outcomes include Visual Analogue Scale, knee outcome survey activities of daily living scale, Active Range of Motion, and the Quadriceps Angle, the tibiofemoral angle, peak adductor moment, the integrated electromyography and root mean square of the surface electromyography of the lower extremity muscles. Paired sample t test was used for Within-Group comparison of outcome indicators, and independent sample t test was used for Between-Group comparison. RESULTS: Of the 160 randomly assigned patients, 150 completed the study. After 4 weeks, the WOMAC index decreased from 61 ± 10.83 to 40.55 ± 7.58 in the combined treatment group and from 60.97 ± 10.18 to 47.7 ± 10.13 in the celecoxib group. The effect of the combined treatment group was significantly higher than that in the celecoxib group (P< 0.001). In the combined treatment group, the score of knee joint daily living scale increased (P< 0.001), the active range of motion increased (P< 0.001), the quadriceps angle decreased (P< 0.001), the tibiofemoral angle increased (P< 0.001), and the peak adduction moment decreased (P< 0.001), integrated electromyography and root mean square increased (P< 0.001), and the effect was better than that of celecoxib group (P< 0.001). The visual analog scale score in celecoxib group was lower (P< 0.001) and knee outcome survey activities of daily living scale was higher (P< 0.001). The incidence of treatment-related adverse events was 10% in the celecoxib group and 2.5% in the combined treatment group, all of which were mild. CONCLUSIONS: Hip abductors exercise training combined with repetitive transcranial magnetic stimulation can enhance abduction muscle strength, improve mobility, reduce joint pain, and enhance quality of life. This combined approach shows superior clinical effectiveness compared to oral celecoxib.

16.
Front Immunol ; 15: 1414869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100674

RESUMEN

Introduction: The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods: A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion: The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1ß and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.


Asunto(s)
Pollos , Suplementos Dietéticos , Microbioma Gastrointestinal , Lipopolisacáridos , Extractos Vegetales , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Masculino , Papaveraceae/química , Alimentación Animal , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/inmunología , Citocinas/metabolismo , Citocinas/sangre , Intestinos/efectos de los fármacos , Intestinos/microbiología , Intestinos/inmunología
17.
Adv Sci (Weinh) ; : e2406095, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099408

RESUMEN

Catalytic activation of Caryl-O bonds is considered as a powerful strategy for the production of aromatics from lignin. However, due to the high reduction potentials of diaryl ether 4-O-5 linkage models, their single electron reduction remains a daunting challenge. This study presents the blue light-induced bifunctional N-heterocyclic carbene (NHC)-catalyzed one-electron reduction of diaryl ether 4-O-5 linkage models for the synthesis of trivalent phosphines. The H-bond between the newly devised bifunctional NHC and diaryl ethers is responsible for the success of the single electron transfer. Furthermore, this approach demonstrates selective one-electron reduction of unsymmetric diaryl ethers, oligomeric phenylene oxide, and lignin model.

18.
Transl Cancer Res ; 13(7): 3262-3272, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145066

RESUMEN

Background: It is difficult for chronic myeloid leukemia (CML) patients with BCR::ABL1 independent drug resistance to achieve optimal efficacy. The aim of this study is to investigate the BCR::ABL1 kinase independent mechanism of tyrosine kinase inhibitor (TKI) resistance in CML patients to develop targeted therapeutic strategy. Methods: Herein, we analyzed the long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of patients who achieved sustained deep molecular response (DMR) after TKI treatment and patients with non-DMR using RNA-seqencing. Furthermore, the differentially expressed lncRNAs and mRNAs were identified. The expression of chosen lncRNA was validated in an expanded cohort, and bioinformatics analysis was performed to analyze the function of selected mRNA. Results: LncRNA data analysis indicated the diversity lncRNA profiles among healthy individuals, CML patients with non-DMR, and CML patients with DMR. Differential expression analysis and Veen plot of up-regulated lncRNAs in patients with non-DMR (compared with healthy individuals) and down-regulated lncRNAs in patients with DMR (compared to patients with non-DMR) revealed that lncRNA CBR3-AS1 overexpression might be related to BCR::ABL1 independent TKI resistance of CML patients. The expression of CBR3-AS1 was then verified in an expanded cohort, suggesting that, compared with control group, there was no statistical difference of CBR3-AS1 expression in DMR group, whereas, CBR3-AS1 was up-regulated in non-DMR group. Moreover, the mRNA data analysis of RNA-sequencing was performed. We considered genes that up-regulated in non-DMR group (compared with control group), down-regulated in DMR group (compared with non-DMR group), showed no statistical difference between control and DMR group as the potential genes that associated with TKI resistance of CML patients. A total of 55 corresponding mRNAs were obtained including KCNA6, a target gene of CBR3-AS1. Further bioinformatics analysis showed that the major interacted genes of KCNA6 were enriched in several resistance-associated pathways including interleukin -17 signaling pathway and cyclic adenosine monophosphate signaling pathway. Conclusions: In conclusion, this work indicates that CBR3-AS1 might be involved in BCR::ABL1 independent TKI resistance of CML patients through targeting KCNA6, providing a novel target for intervention treatment of CML patients with BCR::ABL1 independent TKI resistance.

19.
J Therm Biol ; 123: 103921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39032288

RESUMEN

Heat stress (HS) can cause damage to the organism, especially the intestinal tract. In this paper, we investigated the effects of the combined action of tea polyphenols (TP) and hydrogen-rich electrolyzed water (HRW) on HS in mice. The combination of HRW feeding and TP of intraperitoneal injection was screened by in vitro antioxidant activity assay. The results revealed that the combined treatment was more helpful in alleviating the effects of HS on the behavior, growth performance, oxidative damage, and intestinal tract of mice compared with the respective treatments of TP and HRW (P < 0.05). Additionally, the combined treatment could repair HS-induced intestinal dysbiosis in mice, augmenting the number and abundance of bacteria, increasing the number of beneficial genera (Lachnospiraceae_NK4A136_group and Lactobacillus), and decreasing the number of harmful genera (Desulfovibrio and Enterorhabdus), and the effect was significantly better than that of individual treatment (P < 0.05). In conclusion, the combined treatment of TP and HRW effectively mitigates the adverse effects of HS on mouse behavior, growth performance, oxidative damage, and intestinal dysbiosis, surpassing the efficacy of individual treatments with TP or HRW alone.


Asunto(s)
Microbioma Gastrointestinal , Hidrógeno , Estrés Oxidativo , Polifenoles , , Animales , Polifenoles/farmacología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hidrógeno/farmacología , Té/química , Masculino , Respuesta al Choque Térmico/efectos de los fármacos , Agua/química , Intestinos/efectos de los fármacos , Intestinos/microbiología , Disbiosis/tratamiento farmacológico , Electrólisis , Antioxidantes/farmacología
20.
J Physiol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953534

RESUMEN

The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA