Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744324

RESUMEN

In order to evaluate the homogeneity of asphalt mixture quantitatively, the distribution characteristic of internal phases of asphalt mixture were identified based on digital image processing technique and stereology theory, and the homogeneity coefficient (i.e., K) was proposed. At the same time, the trend of variation and reliability of homogeneity of asphalt mixture were analyzed by changing the nominal maximum aggregate size, aggregate gradation and asphalt content. The results suggest that the homogeneity of asphalt mixture could be comprehensively described using DIP technique combined with stereology theory. The smaller the K, the better the distribution homogeneity of the asphalt mixture. An improvement in the homogeneity of an asphalt mixture is achieved with the decrease of the nominal maximum aggregate size and a finer aggregate gradation. The asphalt content corresponding to the optimal homogeneity of the internal structure of asphalt mixture specimen is the optimum asphalt content. According to the experimental study, the suggested values of the homogeneity coefficient were given, which provides theoretical support to control the construction quality of the hot mixture asphalt.

2.
Bioresour Technol ; 283: 112-119, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30901583

RESUMEN

The isoelectric point (pI) of lignin-based surfactant is an important factor in the enhancement on the enzymatic hydrolysis of lignocellulose. In this work, lignin carboxylate (LC) and quaternary ammonium lignin carboxylates (LCQ-x, x%: the mass ratio of quaternizing agent to enzymatic hydrolysis lignin) with different isoelectric points were synthesized. LC or LCQ-x with pI significantly lower or higher than 4.8 reduced the non-productive adsorption of cellulase on lignin, but for the significant inhibitory effect on cellulase activity, their enhancements on the enzymatic hydrolysis of lignocellulose were not remarkable. However, LCQ-x with pI around 4.8 preserved the cellulase activity, and significantly reduced the non-productive adsorption of cellulase, therefore remarkably enhanced the enzymatic hydrolysis. 2 g/L LC, LCQ-40 (pI = 5.0) and LCQ-100 (pI = 9.2) increased the enzymatic digestibility of pretreated eucalyptus from 35.2% to 53.4%, 95.3% and 60.4% respectively. In addition, for the excellent pH-response performance, LCQ could be efficiently recovered after enzymatic saccharification.


Asunto(s)
Celulasa/metabolismo , Eucalyptus/metabolismo , Lignina/metabolismo , Tensoactivos/metabolismo , Adsorción , Concentración de Iones de Hidrógeno , Hidrólisis , Punto Isoeléctrico
3.
Bioresour Technol ; 243: 1141-1148, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28764128

RESUMEN

Some zwitterionic surfactants exhibit upper critical solution temperature (UCST) in aqueous solutions. For the zwitterionic surfactant solution mixed with cellulase, when its temperature is below UCST, the cellulase can be recovered by coprecipitation with zwitterionic surfactant. In this work, 3-(Hexadecyldimethylammonio) propanesulfonate (SB3-16) was selected to enhance the enzymatic hydrolysis of lignocelluloses and recover the cellulase. After adding 2mmol/L of SB3-16, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) and by sulfite (Eu-SPORL) increased from 27.9% and 35.1% to 72.6% and 89.7%, respectively. The results showed that SB3-16 could reduce the non-productive adsorption of cellulase on hydrophobic interface, while it did not significantly inhibit the activity of cellulase. For the solution contained 1wt% SB3-16 and 200mg protein/L CTec2 cellulase, 55.2% of protein could be recovered by cooling. The filter paper activity of the recovered cellulase was 1.93FPU/mg protein, which was 95.8% of its initial activity.


Asunto(s)
Celulasa , Lignina , Temperatura , Hidrólisis , Tensoactivos
4.
Bioresour Technol ; 227: 74-81, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28013139

RESUMEN

Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly.


Asunto(s)
Lignina/química , Povidona/química , Adsorción , Celulasa/química , Eucalyptus/química , Eucalyptus/metabolismo , Hidrólisis , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA