Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 1032336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531023

RESUMEN

Introduction: Methotrexate (MTX), a folic acid antagonist and nucleotide synthesis inhibitor, is a cornerstone drug used against acute lymphoblastic leukemia (ALL), but its mechanism of action and resistance continues to be unraveled even after decades of clinical use. Methods: To better understand the mechanisms of this drug, we accessed the intracellular metabolic content of 13 ALL cell lines treated with MTX by 1H-NMR, and correlated metabolome data with cell proliferation and gene expression. Further, we validated these findings by inhibiting the cellular antioxidant system of the cells in vitro and in vivo in the presence of MTX. Results: MTX altered the concentration of 31 out of 70 metabolites analyzed, suggesting inhibition of the glycine cleavage system, the pentose phosphate pathway, purine and pyrimidine synthesis, phospholipid metabolism, and bile acid uptake. We found that glutathione (GSH) levels were associated with MTX resistance in both treated and untreated cells, suggesting a new constitutive metabolic-based mechanism of resistance to the drug. Gene expression analyses showed that eight genes involved in GSH metabolism were correlated to GSH concentrations, 2 of which (gamma-glutamyltransferase 1 [GGT1] and thioredoxin reductase 3 [TXNRD3]) were also correlated to MTX resistance. Gene set enrichment analysis (GSEA) confirmed the association between GSH metabolism and MTX resistance. Pharmacological inhibition or stimulation of the main antioxidant systems of the cell, GSH and thioredoxin, confirmed their importance in MTX resistance. Arsenic trioxide (ATO), a thioredoxin inhibitor used against acute promyelocytic leukemia, potentiated MTX cytotoxicity in vitro in some of the ALL cell lines tested. Likewise, the ATO+MTX combination decreased tumor burden and extended the survival of NOD scid gamma (NSG) mice transplanted with patient-derived ALL xenograft, but only in one of four ALLs tested. Conclusion: Altogether, our results show that the cellular antioxidant defense systems contribute to leukemia resistance to MTX, and targeting these pathways, especially the thioredoxin antioxidant system, may be a promising strategy for resensitizing ALL to MTX.

2.
J Biol Chem ; 298(5): 101891, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378128

RESUMEN

Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-ß-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein-carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.


Asunto(s)
Dictyostelium , Carbohidratos/química , Cristalografía por Rayos X , Dictyostelium/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas , Ligandos , Polisacáridos/metabolismo
4.
Front Oncol ; 9: 141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949447

RESUMEN

The allogeneic hematopoietic stem cell transplantation procedure-the only curative therapy for many types of hematological cancers-is increasing, and graft vs. host disease (GVHD) is the main cause of morbidity and mortality after transplantation. Currently, GVHD diagnosis is clinically performed. Whereas, biomarker panels have been developed for acute GVHD (aGVHD), there is a lack of information about the chronic form (cGVHD). Using nuclear magnetic resonance (NMR) and gas chromatography coupled to time-of-flight (GC-TOF) mass spectrometry, this study prospectively evaluated the serum metabolome of 18 Brazilian patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT). We identified and quantified 63 metabolites and performed the metabolomic profile on day -10, day 0, day +10 and day +100, in reference to day of transplantation. Patients did not present aGVHD or cGVHD clinical symptoms at sampling times. From 18 patients analyzed, 6 developed cGVHD. The branched-chain amino acids (BCAAs) leucine and isoleucine were reduced and the sulfur-containing metabolite (cystine) was increased at day +10 and day +100. The area under receiver operating characteristics (ROC) curves was higher than 0.79. BCAA findings were validated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in 49 North American patients at day +100; however, cystine findings were not statistically significant in this patient set. Our results highlight the importance of multi-temporal and multivariate biomarker panels for predicting and understanding cGVHD.

5.
BMC Cancer ; 16(1): 764, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27716121

RESUMEN

BACKGROUND: Cachexia is one of the most important causes of cancer-related death. Supplementation with branched-chain amino acids, particularly leucine, has been used to minimise loss of muscle tissue, although few studies have examined the effect of this type of nutritional supplementation on the metabolism of the tumour-bearing host. Therefore, the present study evaluated whether a leucine-rich diet affects metabolomic derangements in serum and tumour tissues in tumour-bearing Walker-256 rats (providing an experimental model of cachexia). METHODS: After 21 days feeding Wistar female rats a leucine-rich diet, distributed in L-leucine and LW-leucine Walker-256 tumour-bearing groups, we examined the metabolomic profile of serum and tumour tissue samples and compared them with samples from tumour-bearing rats fed a normal protein diet (C - control; W - tumour-bearing groups). We utilised 1H-NMR as a means to study the serum and tumour metabolomic profile, tumour proliferation and tumour protein synthesis pathway. RESULTS: Among the 58 serum metabolites examined, we found that 12 were altered in the tumour-bearing group, reflecting an increase in activity of some metabolic pathways related to energy production, which diverted many nutrients toward tumour growth. Despite displaying increased tumour cell activity (i.e., higher Ki-67 and mTOR expression), there were no differences in tumour mass associated with changes in 23 metabolites (resulting from valine, leucine and isoleucine synthesis and degradation, and from the synthesis and degradation of ketone bodies) in the leucine-tumour group. This result suggests that the majority of nutrients were used for host maintenance. CONCLUSION: A leucine rich-diet, largely used to prevent skeletal muscle loss, did not affect Walker 256 tumour growth and led to metabolomic alterations that may partially explain the positive effects of leucine for the whole tumour-bearing host.


Asunto(s)
Caquexia/dietoterapia , Leucina/administración & dosificación , Neoplasias/sangre , Animales , Caquexia/sangre , Caquexia/etiología , Línea Celular Tumoral , Dieta , Femenino , Metaboloma , Trasplante de Neoplasias , Neoplasias/complicaciones , Neoplasias/patología , Ratas Wistar , Carga Tumoral
6.
Biomol NMR Assign ; 9(2): 387-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25967379

RESUMEN

Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Espectroscopía de Protones por Resonancia Magnética
7.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 3): 311-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760706

RESUMEN

In recent years, biofuels have attracted great interest as a source of renewable energy owing to the growing global demand for energy, the dependence on fossil fuels, limited natural resources and environmental pollution. However, the cost-effective production of biofuels from plant biomass is still a challenge. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases to polysaccharides, is crucial for enzyme development. Aiming at the structural and functional characterization of novel CBMs involved in plant polysaccharide deconstruction, an analysis of the CAZy database was performed and CBM family 64 was chosen owing to its capacity to bind with high specificity to microcrystalline cellulose and to the fact that is found in thermophilic microorganisms. In this communication, the CBM-encoding module named StX was expressed, purified and crystallized, and X-ray diffraction data were collected from native and derivatized crystals to 1.8 and 2.0 Šresolution, respectively. The crystals, which were obtained by the hanging-drop vapour-diffusion method, belonged to space group P3121, with unit-cell parameters a = b = 43.42, c = 100.96 Šfor the native form. The phases were found using the single-wavelength anomalous diffraction method.


Asunto(s)
Proteínas Bacterianas/química , Spirochaeta/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Spirochaeta/genética
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1232-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195898

RESUMEN

In recent years, owing to the growing global demand for energy, dependence on fossil fuels, limited natural resources and environmental pollution, biofuels have attracted great interest as a source of renewable energy. However, the production of biofuels from plant biomass is still considered to be an expensive technology. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases for polysaccharide degradation, is attracting growing attention. Aiming at the identification of new CBMs, a sugarcane soil metagenomic library was analyzed and an uncharacterized CBM (CBM_E1) was identified. In this study, CBM_E1 was expressed, purified and crystallized. X-ray diffraction data were collected to 1.95 Šresolution. The crystals, which were obtained by the sitting-drop vapour-diffusion method, belonged to space group I23, with unit-cell parameters a = b = c = 88.07 Å.


Asunto(s)
Carbohidratos/química , Metagenómica , Proteínas de Plantas/química , Saccharum , Microbiología del Suelo , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Cartilla de ADN , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación
9.
PLoS One ; 8(10): e76602, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116125

RESUMEN

Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Cinesinas , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Difracción de Rayos X
10.
Proteins ; 78(16): 3386-95, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20848643

RESUMEN

Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino acids termed the repeat domain. This domain mediates protein-protein and protein-DNA interactions, and two polymorphic residues in each repeat unit determine DNA specificity. To gain insights into how the repeat domain promotes protein-protein and protein-DNA contacts, we have solved the structure of a peptide corresponding to 1.5 units of the PthA repeat domain by nuclear magnetic resonance (NMR) and carried out small-angle X-ray scattering (SAXS) and spectroscopic studies on the entire 15.5-repeat domain of PthA2 (RD2). Consistent with secondary structure predictions and circular dichroism data, the NMR structure of the 1.5-repeat peptide reveals three α-helices connected by two turns that fold into a tetratricopeptide repeat (TPR)-like domain. The NMR structure corroborates the theoretical TPR superhelix predicted for RD2, which is also in agreement with the elongated shape of RD2 determined by SAXS. Furthermore, RD2 undergoes conformational changes in a pH-dependent manner and upon DNA interaction, and shows sequence similarities to pentatricopeptide repeat (PPR), a nucleic acid-binding motif structurally related to TPR. The results point to a model in which the RD2 structure changes its compactness as it embraces the DNA with the polymorphic diresidues facing the interior of the superhelix oriented toward the nucleotide bases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dicroismo Circular , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA