Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551362

RESUMEN

OBJECTIVE: Employ the hollow fiber infection model (HFIM) to study sequential antibiotic administration (ampicillin, ciprofloxacin and fosfomycin) using human pharmacokinetic profiles to measure changes in the rate of antibiotic resistance development and compare this to simultaneous combination therapy with the same antibiotic combinations. METHODS: Escherichia coli CFT073, a clinical uropathogenic strain, was exposed individually to clinically relevant pharmacokinetic concentrations of ampicillin on day 1, ciprofloxacin on day 2 and fosfomycin on day 3. This sequence was continued for 10 days in the HFIM. Bacterial samples were collected at different time points to enumerate total and resistant bacterial populations. The results were compared with the simultaneous combination therapy previously studied. RESULTS: Sequential antibiotic treatment (ampicillin-ciprofloxacin-fosfomycin sequence) resulted in the early emergence of single and multi-antibiotic-resistant subpopulations, while the simultaneous treatment regimen significantly delayed or prevented the emergence of resistant subpopulations. CONCLUSION: Sequential administration of these antibiotic monotherapies did not significantly delay the emergence of resistant subpopulations compared to simultaneous treatment with combinations of the same antibiotics. Further studies are warranted to evaluate different sequences of the same antibiotics in delaying emergent resistance.

2.
Int J Antimicrob Agents ; 55(4): 105861, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31838036

RESUMEN

Antibiotic resistance is one of the major threats to public health today. To address this problem requires an urgent comprehensive approach. Strategic and multitargeted combination therapy has been increasingly used clinically to treat bacterial infections. The hollow-fibre infection model (HFIM) is a well-controlled in vitro bioreactor system that is increasingly being used in the assessment of resistance emergence with monotherapies and combination antibiotic therapies. In this study, the HFIM was evaluated as a reliable in vitro method to quantitatively and reproducibly analyse the emergence of antibiotic resistance using ampicillin, fosfomycin and ciprofloxacin and their simultaneous combinations against Escherichia coli CFT073, a clinical uropathogenic strain. Bacteria were exposed to clinically relevant pharmacokinetic (PK) concentrations of the drugs for 10 days. Drug and bacterial samples were collected at different time points for PK analysis and to enumerate total and resistant bacterial populations, respectively. The results demonstrated that double or triple combinations significantly delayed the emergence of resistant E. coli CFT073 subpopulations. These findings suggest that strategic combinations of antimicrobials may play a role in controlling the emergence of resistance during treatment. Further animal and human trials will be needed to confirm this and to ensure that there is no adverse impact on the host microbiome or unexpected toxicity. The HFIM system could potentially be used to identify clinically relevant combination dosing regimens for use in a clinical trial evaluating the appearance of resistance to antibacterial drugs.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/farmacocinética , Reactores Biológicos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Ampicilina/farmacocinética , Ampicilina/farmacología , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacología , Combinación de Medicamentos , Escherichia coli/genética , Fosfomicina/farmacocinética , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
3.
Future Sci OA ; 5(1): FSO349, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30652018

RESUMEN

Although a marked decrease in mortality associated with bacterial infections is attributed to the discovery of antibiotics, antibiotic resistance has become a global health concern due to their misuse. A dynamic in vitro hollow-fiber system was used to study antibiotic resistance in Escherichia coli using ampicillin. An LC-MS/MS assay was validated for quantitative analysis of ampicillin in Luria-Bertani broth. The assay was linear from 0.10-50.00 µg/ml. The assay met acceptance criteria for inter- and intra-assay precisions and accuracies across three quality controls. Stability of ampicillin was confirmed at three different storage conditions. In vitro data were similar to simulated plasma PK data further confirming the appropriateness of the experimental design to quantify antibiotics and study occurrence of antimicrobial resistance in real-time.

4.
Biomed Chromatogr ; 32(6): e4214, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29461629

RESUMEN

Extensive use and misuse of antibiotics over the past 50 years has contributed to the emergence and spread of antibiotic-resistant bacterial strains, rendering them as a global health concern. To address this issue, a dynamic in vitro hollow-fiber system, which mimics the in vivo environment more closely than the static model, was used to study the emergence of bacterial resistance of Escherichia coli against fosfomycin (FOS). To aid in this endeavor we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for quantitative analysis of FOS in lysogeny broth. FOS was resolved on a Kinetex HILIC (2.1 × 50 mm, 2.6 µm) column with 2 mm ammonium acetate (pH 4.76) and acetonitrile as mobile phase within 3 min. Multiple reaction monitoring was used to acquire data on a triple quadrupole mass spectrometer. The assay was linear from 1 to 1000 µg/mL. Inter- and intra-assay precision and accuracy were <15% and between ±85 and 115% respectively. No significant matrix effect was observed when corrected with the internal standard. FOS was stable for up to 24 h at room temperature, up to three freeze-thaw cycles and up to 24 h when stored at 4°C in the autosampler. In vitro experimental data were similar to the simulated plasma pharmacokinetic data, further confirming the appropriateness of the experimental design to quantitate antibiotics and study occurrence of antimicrobial resistance in real time. The validated LC-MS/MS assays for quantitative determination of FOS in lysogeny broth will help antimicrobial drug resistance studies.


Asunto(s)
Antibacterianos/análisis , Cromatografía Liquida/métodos , Farmacorresistencia Bacteriana , Fosfomicina/análisis , Pruebas de Sensibilidad Microbiana/métodos , Espectrometría de Masas en Tándem/métodos , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Estabilidad de Medicamentos , Escherichia coli/efectos de los fármacos , Fosfomicina/farmacocinética , Fosfomicina/farmacología , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
J Bacteriol ; 198(21): 3000-3015, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27551019

RESUMEN

Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. IMPORTANCE: Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response.


Asunto(s)
Represión Catabólica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
6.
Mol Microbiol ; 99(4): 627-39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26507976

RESUMEN

Csr is a conserved global regulatory system, which uses the sequence-specific RNA-binding protein CsrA to activate or repress gene expression by binding to mRNA and altering translation, stability and/or transcript elongation. In Escherichia coli, CsrA activity is regulated by two sRNAs, CsrB and CsrC, which bind to multiple CsrA dimers, thereby sequestering this protein away from its mRNA targets. Turnover of CsrB/C sRNAs is tightly regulated by a GGDEF-EAL domain protein, CsrD, which targets them for cleavage by RNase E. Here, we show that EIIA(Glc) of the glucose-specific PTS system is also required for the normal decay of these sRNAs and that it acts by binding to the EAL domain of CsrD. Only the unphosphorylated form of EIIA(Glc) bound to CsrD in vitro and was capable of activating CsrB/C turnover in vivo. Genetic studies confirmed that this mechanism couples CsrB/C sRNA decay to the availability of a preferred carbon source. These findings reveal a new physiological influence on the workings of the Csr system, a novel function for the EAL domain, and an important new way in which EIIA(Glc) shapes global regulatory circuitry in response to nutritional status.


Asunto(s)
Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Largo no Codificante/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Estabilidad del ARN/genética , ARN Bacteriano/genética , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
PLoS One ; 10(12): e0145035, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26673755

RESUMEN

The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA) away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA) binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteínas de la Membrana/metabolismo , Fosfotransferasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Inmunoprecipitación de Cromatina , Biología Computacional , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Motivos de Nucleótidos , Fosforilación , Filogenia , Unión Proteica , Procesamiento Postranscripcional del ARN , Eliminación de Secuencia , Activación Transcripcional
8.
Mol Microbiol ; 92(5): 945-58, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24708042

RESUMEN

In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two non-coding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance base-pairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , ARN Mensajero/genética , Temperatura
9.
Appl Environ Microbiol ; 78(2): 411-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22101045

RESUMEN

Indole production by Escherichia coli, discovered in the early 20th century, has been used as a diagnostic marker for distinguishing E. coli from other enteric bacteria. By using transcriptional profiling and competition studies with defined mutants, we show that cyclic AMP (cAMP)-regulated indole formation is a major factor that enables E. coli growth in mixed biofilm and planktonic populations with Pseudomonas aeruginosa. Mutants deficient in cAMP production (cyaA) or the cAMP receptor gene (crp), as well as indole production (tnaA), were not competitive in coculture with P. aeruginosa but could be restored to wild-type competitiveness by supplementation with a physiologically relevant indole concentration. E. coli sdiA mutants, which lacked the receptor for both indole and N-acyl-homoserine lactones (AHLs), showed no change in competitive fitness, suggesting that indole acted directly on P. aeruginosa. An E. coli tnaA mutant strain regained wild-type competiveness if grown with P. aeruginosa AHL synthase (rhlI and rhlI lasI) mutants. In contrast to the wild type, P. aeruginosa AHL synthase mutants were unable to degrade indole. Indole produced during mixed-culture growth inhibited pyocyanin production and other AHL-regulated virulence factors in P. aeruginosa. Mixed-culture growth with P. aeruginosa stimulated indole formation in E. coli cpdA, which is unable to regulate cAMP levels, suggesting the potential for mixed-culture gene activation via cAMP. These findings illustrate how indole, an early described feature of E. coli central metabolism, can play a significant role in mixed-culture survival by inhibiting quorum-regulated competition factors in P. aeruginosa.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Indoles/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA