RESUMEN
BACKGROUND: 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE: We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS: 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS: 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS: 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.
Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Pólipos Nasales/metabolismo , Mucosa Respiratoria/metabolismo , Rinitis/metabolismo , Sinusitis/metabolismo , Cornetes Nasales/metabolismo , Adulto , Araquidonato 15-Lipooxigenasa/genética , Células Cultivadas , Quimiocina CCL26/metabolismo , Enfermedad Crónica , Activación Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pólipos Nasales/complicaciones , ARN Interferente Pequeño/genética , Mucosa Respiratoria/patología , Rinitis/complicaciones , Sinusitis/complicaciones , Regulación hacia ArribaRESUMEN
A clear dependence on the ligand has been observed for the magnetic properties of a closely related series of Co(II) cubane structures, viz. [Co4(mbm or bm)4(ROH)4Br4] (1-MeOH, 1-EtOH, 2-MeOH, and 2-EtOH, where 1 = [Co4(mbm)4Br4], 2 = [Co4(bm)4Br4], bm = (1H-benzo[d]imidazol-2-yl)methanolate. and mbm = 1-Me-bm.) The [Co4(OR)4] cubane core consists of an octahedral CoII center chelated by the alkoxide oxygen and imidazole nitrogen atoms from monoanionic bm or mbm and coordinated by methanol/alcohol and bromine. Interestingly, electrospray ionization mass spectrometry (ESI-MS) indicates that 1-MeOH and 2-MeOH are unstable in methanol and transformed to the butterfly [Co4L6]2+ but that 1-EtOH and 2-EtOH are stable in ethanol. Their magnetic susceptibilities suggest ferromagnetic coupling between the nearest cobalt centers to give a theoretical S = 4 × 3/2 ground state with considerable magneto-crystalline behavior. The packing and intermolecular interactions appear to influence the geometry of the cubes and thus the anisotropy of cobalt, which leads to different blocking temperatures (TB). Consequently, the compounds with mbm, 1-MeOH and 1-EtOH, exhibit TB > 2 K as shown by the relaxation of magnetization in zero applied dc field where the barriers Ueff/kB are respectively 27 and 21 K and relaxation times are τ0 = 1.3 × 10-9 and 9.7 × 10-9 s. However, the compounds with bm, 2-MeOH and 2-EtOH, remain paramagnetic above 2 K and do not show nonlinear response of the ac susceptibilities. These findings reaffirm the subtle dependence of single-molecule magnetism on coordination geometry and intermolecular interaction.