RESUMEN
A rat model with cartilage chondrocyte injury was established using interleukin-1ß (IL-1ß) to investigate the effect of Ginkgo biloba extract (EGb) on matrix metalloproteinase-3 (MMP-3) expression. Rat chondrocytes were extracted and randomly divided into six groups: control group, IL-1ß (model) group, IL-1ß + dexamethasone group, and IL-1ß + EGb group (both high and low dose groups). Reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay were used to detect MMP-3 expression. Compared to the MMP-3 mRNA level in the control group, MMP-3 mRNA level significantly increased in the model group (P < 0.05). The application of dexamethasone or EGb significantly decreased the MMP-3 mRNA level (P < 0.05). MMP-3 mRNA and protein levels decreased in the EGb-treated group, especially in the high-dose group, compared to those in the dexamethasone group (P < 0.05). EGb may reduce MMP-3 production during IL-1ß-induced chondrocyte damage and protect chondrocytes to some extent, with better efficacy at high doses.
Asunto(s)
Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Expresión Génica , Ginkgo biloba/química , Metaloproteinasa 3 de la Matriz/genética , Extractos Vegetales/farmacología , Animales , Células Cultivadas , Condrocitos/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Metaloproteinasa 3 de la Matriz/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Extractos Vegetales/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , RatasRESUMEN
An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.