Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 19(1): 6-21, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18228172

RESUMEN

Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.


Asunto(s)
Recombinación Genética , Acetiltransferasas/genética , Animales , Fenómenos Fisiológicos Celulares , Cromosomas/genética , Cartilla de ADN , Reparación del ADN , Plásmidos , Porcinos , Proteína p53 Supresora de Tumor/genética
2.
Cloning Stem Cells ; 4(2): 105-12, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12171703

RESUMEN

To date, the efficiency of pig cloning by nuclear transfer of somatic cell nuclei has been extremely low, with less than 1% of transferred embryos surviving to term. Even the utilization of complex procedures such as two rounds of nuclear transfer has not resulted in greater overall efficiencies. As a result, the applicability of the technology for the generation of transgenic and cloned animals has not moved forward rapidly. We report here a simple nuclear transfer protocol, utilizing commercially available in vitro-matured oocytes, that results in greater than 5% overall cloning efficiency. Of five recipients receiving nuclear transfer embryos produced with a fetal fibroblast cell line as nuclear donor, all five established pregnancies by day 28 (100%), and 4/5 (80%) went to term. Efficiencies for each transfer were 7% (9 piglets/128 doublets transferred), 5% (5/100), 12% (7/59), and 6.6% (7/106). The overall efficiency in all recipients was 5.5% and in pregnant recipients 7.7%, with a total of 28 cloned piglets produced. With the average fusion rate being 58%, the percentage of fused doublets producing a live piglet approached 12%. The method described here can be undertaken by a single micromanipulator at a reasonable cost, and should facilitate the broad utilization of porcine cloning technology in transgenic and nontransgenic applications.


Asunto(s)
Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear , Oocitos/citología , Porcinos/genética , Animales , Técnicas de Cultivo , Transferencia de Embrión , Femenino , Repeticiones de Microsatélite/genética , Embarazo , Razón de Masculinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA