Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38048344

RESUMEN

A method employing online solid phase extraction (SPE) coupled to UPLC-MS/MS was developed for the determination of residues of the acid herbicide quinclorac plus its transformation product, quinclorac methyl ester, in honey. The analytical method involved dissolving the honey in a mixture of methanol:water followed by direct injection into a two-dimensional UPLC system which is used to perform an automated SPE cleanup on a reusable phenyl cartridge prior to the target analytes being transferred onto an analytical UPLC column for subsequent chromatographic separation followed by MS/MS detection. The limits of quantitation for quinclorac and quinclorac methyl ester in honey were both set at 0.5 µg kg-1 and the method detection limit was estimated to be 0.012 µg kg-1 for each compound. The working analytical range (0.5-100 µg kg-1) was validated by analysing a series of spiked replicate honey samples. The method was applied to the analysis of various honeys obtained from numerous different commercial sources. Quinclorac was detected in 9 out of 30 samples at concentrations ranging from 0.6 to 31.5 µg kg-1. Quinclorac methyl ester, which is estimated to be significantly more toxic than the parent herbicide itself, was not detected in any honey sample.


Asunto(s)
Herbicidas , Miel , Quinolinas , Espectrometría de Masas en Tándem/métodos , Miel/análisis , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Herbicidas/análisis , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos
2.
Ann Work Expo Health ; 67(3): 354-365, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565164

RESUMEN

OBJECTIVES: We aimed to characterize polycyclic aromatic hydrocarbons (PAHs) in the breathing zone and on the skin of wildland firefighters and to assess their contribution to urinary 1-hydroxypyrene (1-HP) over repeated firefighting rotations. We asked if improved skin hygiene or discretionary use of an N95 mask would reduce absorption. METHODS: In collaboration with wildfire services of two Canadian provinces, Alberta and British Columbia (BC), we recruited wildland firefighters from crews willing to be followed up over successive rotations and to be randomly assigned to normal practice, enhanced skin hygiene (ESH), or ESH plus discretionary use of an N95 mask. We collected spot urine samples at the beginning and end of up to four rotations/firefighter. On designated fire days, as close as possible to the end of rotation, we collected skin wipes from the hands, throat, and chest at the beginning and end of the fire day and, in BC, start of fire-day urine samples. Volunteers carried air monitoring pumps. Participants completed questionnaires at the beginning and end of rotations. Exposure since the start of the fire season was estimated from fire service records. Urinary 1-HP was analyzed by LC-MS-MS. Analysis of 21 PAHs on skin wipes and 27 PAHs from air sampling was done by GC-MS-MS. Statistical analysis used a linear mixed effects model. RESULTS: Firefighters in Alberta were recruited from five helitack crews and two unit crews, and in BC from two unit crews with 80 firefighters providing data overall. The fire season in BC was very active with five monitored fire days. In Alberta, with more crews, there were only seven fire days. Overall, log 1-HP/creatinine (ng/g) increased significantly from the start (N = 145) to end of rotation (N = 136). Only three PAHs (naphthalene, phenanthrene, and pyrene) were found on >20% of skin wipes. PAHs from 40 air monitoring pumps included 10 PAHs detected on cassette filters (particles) and 5 on sorbent tubes (vapor phase). A principal component extracted from air monitoring data represented respiratory exposure and total PAH from skin wipes summarized skin exposure. Both routes contributed to the end of rotation urinary 1-HP. The ESH intervention was not demonstrated to effect absorption. Allocation of an N95 mask was associated with lower 1-HP when modeling respiratory exposure (ß = -0.62, 95% CI -1.15 to -0.10: P = 0.021). End of rotation 1-HP was related to 1-HP at the start of the next rotation (ß = 0.25, 95% CI 0.12 to 0.39: P < 0.001). CONCLUSIONS: Exposures to PAHs during firefighting were significant, with samples exceeding the American Conference of Governmental Industrial Hygienists Biological Exposure Index for 1-HP suggesting a need for control of exposure. PAH exposure accumulated during the rotation and was not fully eliminated during the break between rotations. Both respiratory and skin exposures contributed to 1-HP. While improved skin hygiene may potentially reduce dermal absorption, that was not demonstrated here. In contrast, those allocated to discretionary use of an N95 mask had reduced 1-HP excretion. Wildland firefighters in North America do not use respiratory protection, but the results of this study support more effective interventions to reduce respiratory exposure.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Contaminantes Ocupacionales del Aire/análisis , Alberta , Exposición Profesional/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA