Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 198: 106532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718523

RESUMEN

Environmental interactions of marine renewable energy developments vary from fine-scale direct (e.g. potential collision) to indirect wide-scale hydrodynamic changes altering oceanographic features. Current UK Environmental Impact Assessment (EIA) and associated Habitats Regulations Appraisal (HRA) guidelines have limited focus on underlying processes affecting distribution and movements (hence vulnerability) of top predators. This study integrates multi-trophic ship survey (active acoustics and observer data) with an upward-facing seabed platform and 3-dimensional hydrodynamic model as a process-driven framework to investigate predator-prey linkages between seabirds and fish schools. Observer-only data highlighted the need to measure physical drivers of variance in species abundances and distributions. Active acoustics indicated that in situ (preferable to modelled) data were needed to identify temporal changes in hydrodynamics to predict prey and consequently top predator presence. Revising methods to identify key habitats and environmental covariates within current regulatory frameworks will enable more robust and transferable EIA and HRA processes and outputs, and at larger scales for cumulative and strategic-level assessments, enabling future modelling of ecosystem impacts from both climate change and renewable energy extraction.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Energía Renovable , Animales , Monitoreo del Ambiente/métodos , Hidrodinámica , Peces/fisiología , Cambio Climático , Aves/fisiología , Conservación de los Recursos Naturales/métodos
2.
Front Plant Sci ; 10: 1768, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082339

RESUMEN

Plant-lepidopteran interactions involve complex processes encompassing molecules and regulators to counteract defense responses they develop against each other. Lepidoptera identify plants for oviposition and exploit them as larval food sources to complete their development. In turn, plants adopt different strategies to overcome and limit herbivorous damages. The insect egg deposition on leaves can already induce a number of defense responses in several plant species. This minireview deals with the main features involved in the interaction between plants and lepidopteran egg-laying, focusing on responses from both insect and plant side. We discuss different aspects of direct and indirect plant responses triggered by lepidopteran oviposition. In particular, we focus our attention on the mechanisms underlying egg-induced plant defenses that can i) directly damage the eggs such as localized hypersensitive response (HR)-like necrosis, neoplasm formation, production of ovicidal compounds and ii) indirect defenses, such as production of oviposition-induced plant volatiles (OIPVs) used to attract natural enemies (parasitoids) able to kill the eggs or hatching larvae. We provide an overview of chemical, physiological, and molecular egg-mediated plant responses induced by both specialist and generalist lepidopteran species, also dealing with effectors, elicitors, and chemical signals involved in the process. Egg-associated microorganisms are also discussed, although little is known about this third partner participating in plant-lepidopteran interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA