RESUMEN
All the transcriptome sequencing data mentioned in the original article is publicly available at the National Center of Biotechnology Information (NCBI).
RESUMEN
Coffee leaf rust caused by the fungus Hemileia vastatrix is one of the most important leaf diseases of coffee plantations worldwide. Current knowledge of the H. vastatrix genome is limited and only a small fraction of the total fungal secretome has been identified. In order to obtain a more comprehensive understanding of its secretome, we aimed to sequence and assemble the entire H. vastatrix genome using two next-generation sequencing platforms and a hybrid assembly strategy. This resulted in a 547 Mb genome of H. vastatrix race XXXIII (Hv33), with 13,364 predicted genes that encode 13,034 putative proteins with transcriptomic support. Based on this proteome, 615 proteins contain putative secretion peptides, and lack transmembrane domains. From this putative secretome, 111 proteins were identified as candidate effectors (EHv33) unique to H. vastatrix, and a subset consisting of 17 EHv33 genes was selected for a temporal gene expression analysis during infection. Five genes were significantly induced early during an incompatible interaction, indicating their potential role as pre-haustorial effectors possibly recognized by the resistant coffee genotype. Another nine genes were significantly induced after haustorium formation in the compatible interaction. Overall, we suggest that this fungus is able to selectively mount its survival strategy with effectors that depend on the host genotype involved in the infection process.
Asunto(s)
Basidiomycota/fisiología , Coffea/microbiología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Secuenciación Completa del GenomaRESUMEN
KEY MESSAGE: We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.