Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 151: 213441, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37167747

RESUMEN

Bisphosphonates are a class of drugs that induce bone cancer cell death and favor bone regeneration, making them suitable for bone cancer treatment. However, when combined with bioactive glasses to enhance bone regeneration, a chemical bond between biphosphonates and the glass surface inactivates their mechanism of action. A new colloidal hydrogel-based drug delivery system could overcome that limitation once bisphosphonates, such as zoledronic acid (ZA), are incorporated into hydrogel micelles, avoiding their interaction with the glass surface. In this work, we proposed formulations based on a poloxamer 407 thermo-responsive hydrogel matrix containing holmium-doped bioactive glass nanoparticles and different concentrations (0.05 and 5 mg/mL) of ZA. We characterized the influence of the glass and the ZA on the hydrogel properties. In addition, a drug concentration screening was performed, and biological characterizations evaluated the best result. The biological characterization consisted of evaluating cytotoxicity and in vitro bone regeneration ability through cell migration and quantification of genes related to osteogeneses through RT-PCR. The results suggest that the addition of glasses and ZA to the poloxamer did not significantly influence the sol-gel transition of the hydrogels (around 13 °C) regardless of the ZA content. However, the ZA at high concentration (PL-ZA100) decreased the enthalpy of gel formation from 68 to 43 kJ.mol-1 when compared with the pure hydrogel formulation (PL), suggesting a water structurer role of ZA, which is withdrawn when glass particles are added to the system (PL-BG5Ho-ZA100). Solid-state 31P nuclear resonance spectroscopy results showed that part of the ZA is chemically bonded to the glass surface, which explains the withdrawal in the water structurer role of ZA when the glasses were incorporated into the hydrogel. Besides, based on the drug release results, we proposed a model where part of the ZA is "free," encapsulated in the hydrogel matrix, while another part of the ZA is bonded to the glass surface. Finally, considering the in vitro results and our proposed model, the ratio between "free" and "bonded" ZA in our drug delivery systems showed in vitro evidence of a cancer treatment that selectively kills osteosarcoma cells while still favoring an osteogenic microenvironment. By overcoming the limitation of combining bisphosphonates with bioactive glasses, hydrogel-based drug delivery systems can be a solution for the development of new formulations proposed for bone cancer treatment in conjunction with bone regeneration.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Difosfonatos/farmacología , Hidrogeles , Regeneración Ósea , Sistemas de Liberación de Medicamentos , Ácido Zoledrónico , Neoplasias Óseas/tratamiento farmacológico , Microambiente Tumoral
2.
Materials (Basel) ; 14(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802678

RESUMEN

Holmium-containing bioactive glasses can be applied in bone cancer treatment because the holmium content can be neutron activated, having suitable properties for brachytherapy applications, while the bioactive glass matrix can regenerate the bone alterations induced by the tumor. To facilitate the application of these glasses in clinical practice, we proposed a composite based on Poloxamer 407 thermoresponsive hydrogel, with suitable properties for applications as injectable systems. Therefore, in this work, we evaluated the influence of holmium-containing glass particles on the properties of Poloxamer 407 hydrogel (20 w/w.%), including self-assembly ability and biological properties. 58S bioactive glasses (58SiO2-33CaO-9P2O5) containing different Ho2O3 amounts (1.25, 2.5, 3.75, and 5 wt.%) were incorporated into the hydrogel. The formulations were characterized by scanning electron microscopy, differential scanning calorimetry, rheological tests, and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT cell viability against pre-osteoblastic and osteosarcoma cells. The results evidenced that neither the glass particles dispersed in the hydrogel nor the holmium content in the glasses significantly influenced the hydrogel self-assembly ability (Tmic ~13.8 °C and Tgel ~20 °C). Although, the glass particles considerably diminished the hydrogel viscosity in one order of magnitude at body temperature (37 °C). The cytotoxicity results evidenced that the formulations selectively favored pre-osteoblastic cell proliferation and osteosarcoma cell death. In conclusion, the formulation containing glass with the highest fraction of holmium content (5 wt.%) had the best biological results outcomes aiming its application as theragenerative materials for bone cancer treatment.

3.
Mater Sci Eng C Mater Biol Appl ; 119: 111595, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321639

RESUMEN

Bioactive glasses containing rare earth elements have been proposed as promising candidates for applications in brachytherapy of bone cancer. However, their safety relies on a proper dissolution to avoid radioactive materials in the human body, and desirable bioactive properties to regenerate the bone defect caused by the tumor. In this work, we proposed a new series of sol-gel-derived bioactive glasses containing holmium oxide, based on the system (100-x)(58SiO2-33CaO-9P2O5)-xHo2O3 (x = 1.25, 2.5 and 5 wt%). The glasses were characterized regarding their dissolution behavior, bioactivity, and cytotoxicity with pre-osteoblastic cells. Also, in the dissolution experiments, the Arrhenius and Eyring equations were used to obtain some thermodynamic properties of glass dissolution. The results evidenced that the addition of holmium ions in the glass structure decreased the energy barrier of hydrolysis reactions, which favors glass dissolution in an early-stage. However, in the long-term, the strength of Si-O-Ho bonds may be the cause of more stable dissolution. Besides, glasses containing holmium were as bioactive as the 58S bioactive glasses, a highly bioactive composition. Cytotoxicity results showed that all glasses were not cytotoxic, and the composition containing 5 wt.% of Ho2O3 enhanced cell viability. Finally, these results suggest that these glasses are suitable materials for brachytherapy applications due to their proper dissolution behavior, high bioactivity, and high cell viability.


Asunto(s)
Braquiterapia , Holmio , Materiales Biocompatibles , Vidrio , Humanos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA