Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38339571

RESUMEN

This paper proposes a new fault diagnosis method for centrifugal pumps by combining signal processing with deep learning techniques. Centrifugal pumps facilitate fluid transport through the energy generated by the impeller. Throughout the operation, variations in the fluid pressure at the pump's inlet may impact the generalization of traditional machine learning models trained on raw statistical features. To address this concern, first, vibration signals are collected from centrifugal pumps, followed by the application of a lowpass filter to isolate frequencies indicative of faults. These signals are then subjected to a continuous wavelet transform and Stockwell transform, generating two distinct time-frequency scalograms. The Sobel filter is employed to further highlight essential features within these scalograms. For feature extraction, this approach employs two parallel convolutional autoencoders, each tailored for a specific scalogram type. Subsequently, extracted features are merged into a unified feature pool, which forms the basis for training a two-layer artificial neural network, with the aim of achieving accurate fault classification. The proposed method is validated using three distinct datasets obtained from the centrifugal pump under varying inlet fluid pressures. The results demonstrate classification accuracies of 100%, 99.2%, and 98.8% for each dataset, surpassing the accuracies achieved by the reference comparison methods.

2.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299982

RESUMEN

This paper presents a novel framework for classifying ongoing conditions in centrifugal pumps based on signal processing and deep learning techniques. First, vibration signals are acquired from the centrifugal pump. The acquired vibration signals are heavily affected by macrostructural vibration noise. To overcome the influence of noise, pre-processing techniques are employed on the vibration signal, and a fault-specific frequency band is chosen. The Stockwell transform (S-transform) is then applied to this band, yielding S-transform scalograms that depict energy fluctuations across different frequencies and time scales, represented by color intensity variations. Nevertheless, the accuracy of these scalograms can be compromised by the presence of interference noise. To address this concern, an additional step involving the Sobel filter is applied to the S-transform scalograms, resulting in the generation of novel SobelEdge scalograms. These SobelEdge scalograms aim to enhance the clarity and discriminative features of fault-related information while minimizing the impact of interference noise. The novel scalograms heighten energy variation in the S-transform scalograms by detecting the edges where color intensities change. These new scalograms are then provided to a convolutional neural network (CNN) for the fault classification of centrifugal pumps. The centrifugal pump fault classification capability of the proposed method outperformed state-of-the-art reference methods.


Asunto(s)
Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA