Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 11(24): 1903-13, 2001 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-11747816

RESUMEN

BACKGROUND: Assembly and organization of actin filaments are required for many cellular processes, including locomotion and division. In many cases, actin assembly is initiated when proteins of the WASP/Scar family respond to signals from Rho family G proteins and stimulate the actin-nucleating activity of the Arp2/3 complex. Two questions of fundamental importance raised in the study of actin dynamics concern the molecular mechanism of Arp2/3-dependent actin nucleation and how different signaling pathways that activate the same Arp2/3 complex produce actin networks with different three-dimensional architectures? RESULTS: We directly compared the activity of the Arp2/3 complex in the presence of saturating concentrations of the minimal Arp2/3-activating domains of WASP, N-WASP, and Scar1 and found that each induces unique kinetics of actin assembly. In cell extracts, N-WASP induces rapid actin polymerization, while Scar1 fails to induce detectable polymerization. Using purified proteins, Scar1 induces the slowest rate of nucleation. WASP activity is 16-fold higher, and N-WASP activity is 70-fold higher. The data for all activators fit a mathematical model in which one activated Arp2/3 complex, one actin monomer, and an actin filament combine into a preactivation complex which then undergoes a first-order activation step to become a nucleus. The differences between Scar and N-WASP activity are explained by differences in the rate constants for the activation step. Changing the number of actin binding sites on a WASP family protein, either by removing a WH2 domain from N-WASP or by adding WH2 domains to Scar1, has no significant effect on nucleation activity. The addition of a three amino acid insertion found in the C-terminal acidic domains of WASP and N-WASP, however, increases the activity of Scar1 by more than 20-fold. Using chemical crosslinking assays, we determined that both N-WASP and Scar1 induce a conformational change in the Arp2/3 complex but crosslink with different efficiencies to the small molecular weight subunits p18 and p14. CONCLUSION: The WA domains of N-WASP, WASP, and Scar1 bind actin and Arp2/3 with nearly identical affinities but stimulate rates of actin nucleation that vary by almost 100-fold. The differences in nucleation rate are caused by differences in the number of acidic amino acids at the C terminus, so each protein is tuned to produce a different rate of actin filament formation. Arp2/3, therefore, is not regulated by a simple on-off switch. Precise tuning of the filament formation rate may help determine the architecture of actin networks produced by different nucleation-promoting factors.


Asunto(s)
Actinas/fisiología , Proteínas del Citoesqueleto , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas/fisiología , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Actinas/química , Animales , Biopolímeros , Humanos , Proteínas de Microfilamentos/química , Proteínas del Tejido Nervioso/química , Conformación Proteica , Proteínas/química , Proteína del Síndrome de Wiskott-Aldrich , Familia de Proteínas del Síndrome de Wiskott-Aldrich , Proteína Neuronal del Síndrome de Wiskott-Aldrich
2.
J Biol Chem ; 276(5): 3468-75, 2001 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-11029465

RESUMEN

ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas del Citoesqueleto , Listeria monocytogenes/química , Proteínas de la Membrana/farmacología , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Cinética , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Ratas , Homología de Secuencia de Aminoácido , Familia de Proteínas del Síndrome de Wiskott-Aldrich
3.
Genes Dev ; 14(13): 1578-83, 2000 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10887151

RESUMEN

Functional silencing of chromosomal loci can be induced by transgenes (cosuppression) or by introduction of double-stranded RNA (RNAi). Here, we demonstrate the generality of and define rules for a transgene-mediated cosuppression phenomenon in the Caenorhabditis elegans germ line. Functional repression is not a consequence of persistent physical association between transgenes and endogenous genes or of mutations in affected genes. The cosuppression mechanism likely involves an RNA mediator that defines its target specificity, reminiscent of RNAi. Cosuppression is strongly abrogated in rde-2 and mut-7 mutants, but is not blocked in an rde-1 mutant, indicating that cosuppression and RNAi have overlapping but distinct genetic requirements.


Asunto(s)
Caenorhabditis elegans/genética , Silenciador del Gen , Células Germinativas , Transgenes , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Hibridación Fluorescente in Situ , ARN/genética
4.
J Cell Biol ; 148(6): 1267-81, 2000 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-10725339

RESUMEN

Recently, a requirement for beta-arrestin-mediated endocytosis in the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by several G protein-coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of Galphaq-coupled proteinase-activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, beta-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2deltaST363/6A), which is unable to interact with beta-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(deltaST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, beta-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists.


Asunto(s)
Arrestinas/fisiología , Endocitosis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Trombina/fisiología , Animales , Calcio/metabolismo , División Celular , Línea Celular , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Citosol/fisiología , Citosol/ultraestructura , Activación Enzimática , Humanos , Cinética , Microscopía Confocal , Proteína Quinasa 3 Activada por Mitógenos , Modelos Biológicos , Mutagénesis , Ratas , Receptor PAR-2 , Receptores de Trombina/genética , Proteínas Recombinantes/metabolismo , Transfección , beta-Arrestinas
5.
Genetics ; 153(3): 1271-83, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10545458

RESUMEN

Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showing that him-14 functions during the pachytene stage, indicate that him-14 is not needed to establish pairing or synapsis and likely has a more direct role in crossover formation. him-14 encodes a germline-specific member of the MutS family of DNA mismatch repair (MMR) proteins. him-14 has no apparent role in MMR, but like its Saccharomyces cerevisiae ortholog MSH4, has a specialized role in promoting crossing over during meiosis. Despite this conservation, worms and yeast differ significantly in their reliance on this pathway: whereas worms use this pathway to generate most, if not all, crossovers, yeast still form 30-50% of their normal number of crossovers when this pathway is absent. This differential reliance may reflect differential stability of crossover-competent recombination intermediates, or alternatively, the presence of two different pathways for crossover formation in yeast, only one of which predominates during nematode meiosis. We discuss a model in which HIM-14 promotes crossing over by interfering with Holliday junction branch migration.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Intercambio Genético , Proteínas de Unión al ADN , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Meiosis/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Disparidad de Par Base , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/fisiología , Secuencia Conservada , Reparación del ADN , Femenino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas del Helminto/química , Humanos , Datos de Secuencia Molecular , Oocitos/fisiología , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA