Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(1): 110623, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385722

RESUMEN

Motor skill learning requires the activity of the dorsal striatum, with a differential global implication of the dorsomedial and dorsolateral territories. We investigate here whether and how specific striatal neurons encode the acquisition and consolidation of a motor skill. Using ex vivo two-photon calcium imaging after rotarod training, we report that highly active (HA) striatal populations arise from distinct spatiotemporal reorganization in the dorsomedial (DMS) and dorsolateral (DLS) striatum networks and are correlated with learning performance. The DMS overall activity decreases in early training, with few and sparsely distributed HA cells, while the DLS shows a progressive and long-lasting formation of HA cell clusters. These reorganizations result from reinforcement of synaptic connections to the DMS and anatomical rearrangements to the DLS. Targeted silencing of DMS or DLS HA cells with the cFos-TRAP strategy strongly impairs individual performance. Our data reveal that discrete domains of striatal populations encode acquisition and long-lasting retention of a motor skill.


Asunto(s)
Aprendizaje , Destreza Motora , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Neostriado , Neuronas/fisiología
2.
Neuroscience ; 497: 206-214, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35314253

RESUMEN

Memories are initially labile and become stable through consolidation. Once consolidated, a memory can be destabilized by a reminder, requiring reconsolidation to become stable again. Memory reconsolidation has been evidenced in several learning tasks, including novel object recognition (NOR). But the features of the reminder that trigger memory destabilization and reconsolidation in this task are poorly characterized. Memory reconsolidation can be evidenced by delivering either an amnesic agent or a memory enhancer after reactivation and testing the resulting long-term memory alteration. Here we trained male mice for 15 min to induce a strong memory formation. Sulfasalazine, a specific inhibitor of the NF-κB pathway, was administered as an amnesic agent in the dorsal hippocampus. NF-κB is a key transcription factor required for consolidation and reconsolidation. We found that reconsolidation was induced when animals were re-exposed for 5 min to a combination of novel and familiar objects, but not to either two familiar or two novel objects. No destabilization was induced by re-exposure to the context without objects. Re-exposure to a combination of novel and familiar objects induced destabilization with a reactivation session as brief as 1 min. One minute of training induced a weak memory that could be enhanced by sodium butyrate, an inhibitor of histone deacetylases (HDACs), after 1 min of re-exposure. Histone acetylation is an epigenetic mechanism involved in gene expression regulation which positively correlates with memory. Thus, in this study we have performed an accurate characterization of the features of the reminder effective in triggering hippocampal NF-κB-dependent reconsolidation.


Asunto(s)
Consolidación de la Memoria , Memoria , Animales , Hipocampo/metabolismo , Aprendizaje , Masculino , Memoria/fisiología , Ratones , FN-kappa B/metabolismo , Sulfasalazina/farmacología
3.
Mol Neurobiol ; 56(2): 1437-1450, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29948945

RESUMEN

Although important information is available on the molecular mechanisms of long-term memory formation, little is known about the processes underlying memory persistence in the brain. Here, we report that persistent gene expression of CaMKIIδ isoform participates in object recognition long-lasting memory storage in mice hippocampus. We found that CaMKIIδ mRNA expression was sustained up to one week after training and paralleled memory retention. Antisense DNA infusion in the hippocampus during consolidation or even after consolidation impairs 7-day- but not 1-day-long memory, supporting a role of CaMKIIδ in memory persistence. CaMKIIδ gene expression was accompanied by long-lasting nucleosome occupancy changes at its promoter. This epigenetic mechanism is described for the first time in a memory process and offers a novel mechanism for persistent gene expression in neurons. CaMKIIδ protein is mainly present in nucleus and presynaptic terminals, suggesting a role in these subcellular compartments for memory persistence. All these results point to a key function of the sustained gene expression of this overlooked CaMKII isoform in long-lasting memories.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Neuronas/metabolismo , Animales , Miedo/fisiología , Expresión Génica/fisiología , Masculino , Ratones Endogámicos C57BL
4.
Front Mol Neurosci ; 11: 445, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564099

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key protein kinase in neural plasticity and memory, as have been shown in several studies since the first evidence in long-term potentiation (LTP) 30 years ago. However, most of the studies were focused mainly in one of the four isoforms of this protein kinase, the CaMKIIα. Here we review the characteristics and the role of each of the four isoforms in learning, memory and neural plasticity, considering the well known local role of α and ß isoforms in dendritic terminals as well as recent findings about the γ isoform as calcium signals transducers from synapse to nucleus and δ isoform as a kinase required for a more persistent memory trace.

5.
Neurosci Lett ; 632: 169-74, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27589891

RESUMEN

Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Memoria/fisiología , Reconocimiento en Psicología/fisiología , Proteínas Represoras/genética , Animales , Ansiedad/genética , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Heterocigoto , Ratones , Ratones Noqueados , Actividad Motora/genética
6.
Front Mol Neurosci ; 8: 50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441513

RESUMEN

Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory (LTM) formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the nuclear factor κB (NF-κB) family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.

7.
Neurobiol Learn Mem ; 119: 10-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576790

RESUMEN

Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hipocampo/metabolismo , FN-kappa B/metabolismo , Reconocimiento en Psicología/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Transducción de Señal
8.
J Physiol Paris ; 108(4-6): 278-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24978317

RESUMEN

Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.


Asunto(s)
Epigénesis Genética/fisiología , Epigenómica , Memoria/fisiología , Acetilación , Animales , Histonas/fisiología , Humanos , FN-kappa B/metabolismo
9.
Hippocampus ; 24(12): 1549-61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25043904

RESUMEN

Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity.


Asunto(s)
Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , FN-kappa B/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Inhibidores de la Calcineurina/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/fisiología , Electrochoque , Masculino , Ratones Endogámicos C57BL , Pruebas Neuropsicológicas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfasalazina/farmacología , Tacrolimus/farmacología
10.
J Neurosci ; 33(17): 7603-14, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616565

RESUMEN

Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.


Asunto(s)
Histonas/metabolismo , Memoria/fisiología , FN-kappa B/fisiología , Reconocimiento en Psicología/fisiología , Acetilación , Animales , Histona Acetiltransferasas/metabolismo , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA