Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39259459

RESUMEN

Candesartan (CDN) is a useful anti-stroke medication because it lowers blood pressure, inflammation, oxidative stress, angiogenesis and apoptosis. However, CDN has limited efficacy due to its low solubility and poor bioavailability. This study set out to develop nasal pH-responsive in situ hydrogel of CDN-loaded invasomes a (PRHCLI) for enhancing CDN's release, penetration, bioavailability, and effectiveness as a possible treatment for stroke. Based on the results of the pre-formulation investigation, the optimum CLI formulation for intravasomal delivery of CDN was determined to be 3% of phospholipid, 0.16% of cholesterol, 3% of ethanol, and 1% of cineole. The optimum formulation significantly enhanced CDN permeation and release by 2.06-fold and 59.06%, respectively. The CLI formulation was added to a mixture of chitosan (0.67%w/v) and glyceryl monooleate (0.27%v/v) to develop PRHCLI. The PRHCLI formulation enhanced the release and permeation of CDN relative to free CDN by 2.15 and 2.76 folds, respectively. An experimental rat stroke model was utilized for in vivo studies to evaluate the bioavailability, effectiveness, and toxicity of the PRHCLI formulation. The nasal PRHCLI drops increased the CDN's bioavailability by 3.20-fold compared to oral free CDN. Increased grip strength and decreased flexion, spontaneous motor activity, and Morris Water Maze scores in comparison to oral free CDN showed that nasal PRHCLI drops have better anti-stroke activity. The toxicity evaluation revealed the safety of nasal PRHCLI. Hence, nasal PRHCLI drops may represent a promising avenue as a stroke therapy.

2.
J Pharm Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216538

RESUMEN

The current research aimed to design and optimize hyaluronic acid-coated transbilosomes containing venlafaxine (VLF-HA-TBLs) for nose-to-brain delivery for improved management of depressive disorder. Venlafaxine-loaded transbilosomes (VLF-TBLs) were developed according to the film hydration procedure, optimized for maximum efficiency using the quality by design-based Box-Behnken design (BBD), and then coated with hyaluronic acid (HA). The optimized VLF-HA-TBLs were subjected to in vitro characterization, integrated into a thermolabile gel, and then exposed to in vivo evaluation studies. The results revealed that the VLF-HA-TBLs formulation exhibited acceptable size (185.6 ± 4.9 nm), surface charge (-39.8 ± 1.7 mV), and entrapment efficiency (69.6 ± 2.6 %). The morphological study revealed that nanovesicles were spherical and displayed a consistent size distribution without particle aggregation. It also showed improved ex vivo nasal diffusion and a prolonged release profile. In addition, the formulated VLF-HA-TBLs were stable under the studied conditions and tolerable when applied intranasally. Compared to the intranasal administration of VLF solution (VLF-SOL), the biodistribution analysis showed that VLF-HA-TBLs delivered intranasally had a relative bioavailability of 441 % in the brain and 288 % in plasma. Moreover, the intranasal delivery of VLF-HA-TBLs demonstrated much higher bioavailability (512 %) in the brain compared to VLF-SOL administered intravenously. Collectively, it could be possible to infer that HA-TBLs might be an effective nanocarrier to administer VLF to the brain via the nasal route.

3.
Pharmaceutics ; 16(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39065594

RESUMEN

Invasive pulmonary aspergillosis (IPA) is a fatal fungal infection with a high mortality rate. Voriconazole (VCZ) is considered a first-line therapy for IPA and shows efficacy in patients for whom other antifungal treatments have been unsuccessful. The objective of this study was to develop a high-potency VCZ-loaded liposomal system in the form of a dry-powder inhaler (DPI) using the spray-drying technique to convert liposomes into a nanocomposite microparticle (NCMP) DPI, formulated using a thin-film hydration technique. The physicochemical properties, including size, morphology, entrapment efficiency, and loading efficiency, of the formulated liposomes were evaluated. The NCMPs were then examined to determine their drug content, production yield, and aerodynamic size. The L3NCMP was formulated using a 1:1 lipid/L-leucine ratio and was selected for in vitro studies of cell viability, antifungal activity, and stability. These formulated inhalable particles offer a promising approach to the effective management of IPA.

4.
Int J Pharm X ; 7: 100247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706465

RESUMEN

Pathogenic bacteria cause chronic bacterial prostatitis (CBP). CPB is characterized by urinary tract infection and persistence of pathogenic bacteria in prostatic secretion. Owing to poor blood supply to the prostate gland and limited drug penetration, CBP treatment is difficult. Transferosomes are ultradeformable vesicles for nanocarrier applications, which have become an important area of nanomedicine. Such carriers are specifically targeted to the pathological area to provide maximum therapeutic efficacy. It consists of a lipid bilayer soybean lecithin phosphatidylcholine (PC), an edge activator Tween 80 with various ratios, and a chloroform/methanol core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or among the lipid bilayer. Due to their exceptional flexibility, which enables them to squeeze themselves through narrow pores that are significantly smaller than their size, they can be a solution. One formulation (Cipro5 PEG) was selected for further in vitro analysis and was composed of phosphatidylcholine (PC), Tween 80, and polyethylene glycol-6 stearate (PEG-6 stearate) in a ratio of 3:3:1 in a chloroform/methanol mixture (1:2 v/v). In vitro, the results showed that PEGylated transferosomes had faster drug release, higher permeation, and increased bioavailability. The transferosomes were quantified with a particle size of 202.59 nm, a zeta potential of-49.38 mV, and a drug entrapment efficiency of 80.05%. The aim of this study was to investigate drug targeting. Therefore, Monoclonal antibody IgG was coupled with Cipro5 PEG, which has specificity and selectivity for conjugated nanoparticles. In vivo, a total of twenty-five adult Wistar rats were obtained and randomly divided into 5 groups, each of 5 rats at random: the control group, blank group, positive control group, Cipro 5PEG group, and Cipro 5PEG coupled with IgG antibody group. The cytokines levels (IL-1ß, IL-8, and TNF-α) in the serum were detected by analysis kits. Compared with the control group, treatment with Cipro 5PEG coupled with the IgG antibody could significantly inhibit cytokines, according to histological analysis. Cipro 5PEG, coupled with the IgG antibody group, reduced prostate tissue inflammation. Hence, our results show a promising approach to delivering antibiotics for the targeted therapy of CBP.

5.
Int J Pharm X ; 7: 100227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38260917

RESUMEN

Diabetes mellitus is a metabolic disease that raises the odds of developing stroke. Candesartan has been used to prevent stroke due to its inhibitory effects on blood pressure, angiogenesis, oxidative damage, and apoptosis. However, oral candesartan has very limited bioavailability and efficacy due to its weak solubility and slow release. The study aimed to develop a nasal formulation of candesartan-loaded liposomes containing ethanol and propylene glycol (CLEP) to improve candesartan's delivery, release, permeation, and efficacy as a potential diabetes-associated stroke treatment. Using design expert software, different CLEP formulations were prepared and evaluated in vitro to identify the optimum formulation, which. The selected optimum formulation composed of 3.3% phospholipid, 10% ethanol, and 15% propylene glycol significantly increased the release and permeation of candesartan relative to free candesartan by a factor of 1.52 and 1.47, respectively. The optimum formulation significantly reduced the infarction after stroke in rats; decreased flexion, spontaneous motor activity, and time spent in the target quadrant by 70%, 64.71%, and 92.31%, respectively, and enhanced grip strength by a ratio of 2.3. Therefore, nasal administration of the CLEP formulation could be a potential diabetes-associated stroke treatment.

6.
Pharmaceutics ; 15(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37765211

RESUMEN

Ischemic stroke is the second-leading cause of death. Hyperglycemia, which is characteristic of diabetes mellitus, contributes to the development of endothelial dysfunction and increases the risk of stroke. Isoxsuprine is an efficient beta-adrenergic agonist that improves blood flow to the ischemic aria and stops the infarct core from growing. However, low bioavailability, a short biological half-life, and first-pass hepatic metabolism reduce the therapeutic efficacy of oral isoxsuprine. Therefore, the authors focused on developing isoxsuprine-loaded liposomes containing ethanol and propylene glycol (ILEP) formulation as nasal drops for the treatment of ischemic stroke in diabetic patients. Different ILEP formulations were optimized using Design Expert software, and the selected formulation was examined in vivo for its anti-stroke effect using a rat model of diabetes and stroke. The optimized ILEP, composed of 15% propylene glycol, 0.16% cholesterol, 10% ethanol, and 3.29% phospholipid, improved the sustainability, permeation, and targeting of isoxsuprine. Furthermore, the in vivo studies verified the improved neurological behavior and decreased dead shrunken neurons and vascular congestion of the rats treated with the optimized ILEP formulation, demonstrating its anti-stroke activity. In conclusion, our study found that treatment with an optimized ILEP formulation prevented the initiation and severity of stroke, especially in diabetic patients.

7.
Int J Pharm X ; 6: 100208, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680878

RESUMEN

This study aimed to formulate and statistically optimize cubosomal formulations of metformin (MTF) to enhance its breast anticancer activity. A Box Behnken design was employed using Design-Expert® software. The formulation variables were glyceryl monooleate concentration (GMO) w/w%, Pluronic F-127 concentration (PF127) w/w% and Tween 80 concentration w/w% whereas Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. The design expert software was used to perform the process of optimization numerically. X ray diffraction (XRD), Transmission electron microscope (TEM), in-vitro release study, short-term stability study, and in in-vitro cell proliferation assay on the MDA-MB-231 breast cancer and LOVO cancer cell lines were used to validate the optimized cubosomal formulation. The optimized formulation had a composition of 4.35616 (w/w%) GMO, 5 (w/w%) PF127 and 7.444E-6 (w/w%) Tween 80 with a desirability of 0.733. The predicted values for EE%, VS and ZP were 78.0592%, 307.273 nm and - 26.8275 mV, respectively. The validation process carried out on the optimized formula revealed that there were less than a 5% variance from the predicted responses. The XRD thermograms showed that MTF was encapsulated inside the cubosomal vesicles. TEM images of the optimized MTF cubosomal formulation showed spherical non-aggregated nanovesicles. Moreover, it revealed a sustained release profile of MTF in comparison to the MTF solution. Stability studies indicated that optimum cubosomal formulation was stable for thirty days. Cytotoxicity of the optimized cubosomal formulation was enhanced on the MDA-MB-231 breast and LOVO cancer cell lines compared to MTF solution even at lower concentrations. However, it showed superior cytotoxic effect on breast cancer cell line. So, cubosomes could be considered a promising carrier of MTF to treat breast and colon cancers.

8.
Pharmaceutics ; 15(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37631309

RESUMEN

Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.

9.
Int J Pharm X ; 6: 100206, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37637477

RESUMEN

This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.

10.
Pharmaceutics ; 15(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513991

RESUMEN

Numerous neurological disorders have a pathophysiology that involves an increase in free radical production in the brain. Quercetin (QER) is a nutraceutical compound that shields the brain against oxidative stress-induced neurodegeneration. Nonetheless, its low oral bioavailability diminishes brain delivery. Therefore, the current study aimed to formulate QER-loaded transferosomal nanovesicles (QER-TFS) in situ gel for QER brain delivery via the intranasal route. This study explored the impacts of lipid amount, edge activator (EA) amount, and EA type on vesicle diameter, entrapment, and cumulative amount permeated through nasal mucosa (24 h). The optimum formulation was then integrated into a thermosensitive gel after its physical and morphological characteristics were assessed. Assessments of the optimized QER-TFS showed nanometric vesicles (171.4 ± 3.4 nm) with spherical shapes and adequate entrapment efficiency (78.2 ± 2.8%). The results of short-term stability and high zeta potential value (-32.6 ± 1.4 mV) of QER-TFS confirmed their high stability. Compared with the QER solution, the optimized QER-TFS in situ gel formulation exhibited sustained release behavior and augmented nasal mucosa permeability. CT scanning of rat brains demonstrated the buildup of gold nanoparticles (GNPs) in the brains of all treatment groups, with a greater level of GNPs noted in the rats given the transferosomal gel. Additionally, in vitro studies on PCS-200-014 cells revealed minimal cytotoxicity of QER-TFS in situ gel. Based on these results, the developed transferosomal nanovesicles may be a suitable nanocarrier for QER brain targeting through the intranasal route.

11.
Gels ; 9(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37232992

RESUMEN

The aim of the present study is to formulate highly permeable carriers (i.e., transethosomes) for enhancing the delivery of prednisolone combined with tacrolimus for both topical and systemic pathological conditions. A Box-Behnken experimental design was implemented in this research. Three independent variables: surfactant concentration (X1), ethanol concentration (X2), and tacrolimus concentration (X3) were adopted in the design while three responses: entrapment efficiency (Y1), vesicle size (Y2), and zeta potential (Y3) were investigated. By applying design analysis, one optimum formulation was chosen to be incorporated into topical gel formulation. The optimized transethosomal gel formula was characterized in terms of pH, drug content, and spreadability. The gel formula was challenged in terms of its anti-inflammatory effect and pharmacokinetics against oral prednisolone suspension and topical prednisolone-tacrolimus gel. The optimized transethosomal gel achieved the highest rate of rat hind paw edema reduction (98.34%) and highest pharmacokinetics parameters (Cmax 133.266 ± 6.469 µg/mL; AUC0-∞ 538.922 ± 49.052 µg·h/mL), which indicated better performance of the formulated gel.

12.
Gels ; 9(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37102934

RESUMEN

There are many different infections and factors that can lead to skin illnesses, but bacteria and fungi are the most frequent. The goal of this study was to develop a hexatriacontane-loaded transethosome (HTC-TES) for treating skin conditions caused by microbes. The HTC-TES was developed utilizing the rotary evaporator technique, and Box-Behnken design (BBD) was utilized to improve it. The responses chosen were particle size (nm) (Y1), polydispersity index (PDI) (Y2), and entrapment efficiency (Y3), while the independent variables chosen were lipoid (mg) (A), ethanol (%) (B), and sodium cholate (mg) (C). The optimized TES formulation with code F1, which contains lipoid (mg) (A) 90, ethanol (%) (B) 25, and sodium cholate (mg) (C) 10, was chosen. Furthermore, the generated HTC-TES was used for research on confocal laser scanning microscopy (CLSM), dermatokinetics, and in vitro HTC release. The results of the study reveal that the ideal formulation of the HTC-loaded TES had the following characteristics: 183.9 nm, 0.262 mV, -26.61 mV, and 87.79% particle size, PDI, and entrapment efficiency, respectively. An in vitro study on HTC release found that the rates of HTC release for HTC-TES and conventional HTC suspension were 74.67 ± 0.22 and 38.75 ± 0.23, respectively. The release of hexatriacontane from TES fit the Higuchi model the best, and the Korsmeyer-Peppas model indicates the release of HTC followed a non-Fickian diffusion. By having a higher negative value for cohesiveness, the produced gel formulation demonstrated its stiffness, whereas good spreadability indicated better gel application to the surface. In a dermatokinetics study, it was discovered that TES gel considerably increased HTC transport in the epidermal layers (p < 0.05) when compared to HTC conventional formulation gel (HTC-CFG). The CLSM of rat skin treated with the rhodamine B-loaded TES formulation demonstrated a deeper penetration of 30.0 µm in comparison to the hydroalcoholic rhodamine B solution (0.15 µm). The HTC-loaded transethosome was determined to be an effective inhibitor of pathogenic bacterial growth (S. aureus and E. coli) at a concentration of 10 mg/mL. It was discovered that both pathogenic strains were susceptible to free HTC. According to the findings, HTC-TES gel can be employed to enhance therapeutic outcomes through antimicrobial activity.

13.
Polymers (Basel) ; 15(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37050387

RESUMEN

Various factors limit the use of simvastatin as an anticancer drug. Therefore, this study aimed to analyse simvastatin (SIM)-loaded cubosome efficacy against breast cancer. SIM-loaded cubosomes were prepared using the emulsification method using different glyceryl monooleate, Pluronic F127 (PF-127), and polyvinyl alcohol (PVA) ratios. The best cubosomal formula was subjected to an in vitro cytotoxicity analysis using the human breast cancer cell line, MDA-MB-231 (MDA) (ATCC, HTB-26), and formulated as oral disintegrating tablets through direct compression. PF-127 and PVA positively affected drug loading, and the entrapment efficiency percentage of different SIM-cubosomal formulations ranged from 33.52% to 80.80%. Vesicle size ranged from 181.9 ± 0.50 to 316.6 ± 1.25 nm. PF-127 enhanced in vitro SIM release from cubosome formulations due to its solubilising action on SIM. The in vitro dissolution analysis indicated that SIM exhibited an initial dissolution of 10.4 ± 0.25% within the first 5 min, and 63.5 ± 0.29% of the loaded drug was released after 1 h. Moreover, cubosome formula F3 at 25 and 50 µg/mL doses significantly decreased MDA cell viability compared to the 12.5 µg/mL dose. The untreated SIM suspension and drug-free cubosomes at all doses had no significant influence on MDA cell viability compared to the control.

14.
Saudi Pharm J ; 31(1): 135-146, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685296

RESUMEN

The present study was aimed to formulate and evaluate fast dissolving oral film of Rosuvastatin calcium to improve its bioavailability in comparison to typical solid oral dosage forms. The drug was formulated as solid dispersion with hydrophilic polymers and assessed for different constraints such as drug content, saturated solubility, and drug-polymer interaction. Best formula was selected and prepared in the form of orodispersible film. The films were developed by solvent casting method and examined for weight variations, drug content, folding endurance, pH, swelling profile, disintegration time, and in vitro dissolution. Further pharmacokinetic study was also performed on rabbit and compared with that of the marketed oral formulation. The drug and the polymers were found to be compatible with each other by FTIR study. Maximum solubility was found at drug polymer ratio of 1:4 and that was 54.53 ± 2.05 µg/mL. The disintegration time of the developed film was observed to be 10 ± 2.01 s, while release of the Rosuvastatin from the film was found to be 99.06 ± 0.40 in 10 min. Stability study shown that developed film was stable for three months. Further pharmacokinetic study revealed that developed orodispersible film had enhance oral bioavailability as compared to marketed product (Crestor® tablets). Conclusively, the study backs the development of a viable ODF of Rosuvastatin with better bioavailability.

15.
Pharmaceutics ; 14(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432712

RESUMEN

This study aimed to make a formulation and statistical optimization of transethosomal formulations of rosuvastatin (ROS) to enhance its topical wound healing efficiency. Design-Expert® software was used to employ I optimal design. The formulation variables in the study were surfactant concentration (%w/v), ethanol concentration (%w/v) and surfactant type (span 60 or tween 80), while the dependent responses were entrapment efficiency percent (EE%), vesicle size (VS) and zeta potential (ZP). The numerical optimization process employed by the design expert software resulted in an optimum formula composed of 0.819439 (%w/v) span 60, 40 (%w/v) ethanol and 100 mg lecithin with a desirability of 0.745. It showed a predicted EE% value of 66.5517 vs. 277.703 nm and a ZP of -33. When it was prepared and validated, it showed less than a 5% deviation from the predicted values. The optimum formula was subjected to further characterizations, such as DSC, XRD, TEM, in vitro release, the effect of aging and wound healing efficiency. The DSC thermogram made a confirmation of the compatibility of ROS with the ingredients used in the formulation. XRD showed the encapsulation of ROS in the transethosomal vesicles. The TEM image pointed out the spherical nature of the nanovesicles with the absence of aggregation. Additionally, the optimum formula revealed an enhancement of drug release in comparison with the drug suspension. It also showed good stability for one month. Furthermore, it revealed good wound healing efficiency when compared with the standard silver sulphadiazine (1% w/w) ointment or the drug-loaded gel, which could be related to the enhanced penetration of the nanosized vesicles of TESMs into the skin, which enhances the wound healing process. So, it could be regarded as a promising carrier of ROS for the treatment of chronic wounds.

16.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36145303

RESUMEN

A liposphere system for intranasal delivery of quetiapine fumarate (QTF) was created to assess the potential for enhanced drug delivery. We investigated the effects of particle size, entrapment effectiveness, poly dispersibility index, and pluronic incorporation percentage on these variables. The optimal formula was examined using a TEM, and investigations into DSC, XRD, and FTIR were made. Optimized liposphere formulation in vitro dissolution investigation with a mean diameter of 294.4 ± 18.2 nm revealed about 80% drug release in 6 h. The intranasal injection of QTF-loaded lipospheres showed a shorter Tmax compared to that of intranasal and oral suspension, per the findings of an in vivo tissue distribution investigation in Wistar mice. Lipospheres were able to achieve higher drug transport efficiency (DTE %) and direct nose-to-brain drug transfer (DTP %). A potentially effective method for delivering QTF to specific brain regions is the liposphere system.

17.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36145327

RESUMEN

The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from -23.8 ± 2.65 to -82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.

18.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36015089

RESUMEN

This study aimed to formulate and statistically optimize glycerosomal formulations of Quetiapine fumarate (QTF) to increase its oral bioavailability and enhance its brain delivery. The study was designed using a Central composite rotatable design using Design-Expert® software. The independent variables in the study were glycerol % w/v and cholesterol % w/v, while the dependent variables were vesicle size (VS), zeta potential (ZP), and entrapment efficiency percent (EE%). The numerical optimization process resulted in an optimum formula composed of 29.645 (w/v%) glycerol, 0.8 (w/v%) cholesterol, and 5 (w/v%) lecithin. It showed a vesicle size of 290.4 nm, zeta potential of -34.58, and entrapment efficiency of 80.85%. The optimum formula was further characterized for DSC, XRD, TEM, in-vitro release, the effect of aging, and pharmacokinetic study. DSC thermogram confirmed the compatibility of the drug with the ingredients. XRD revealed the encapsulation of the drug in the glycerosomal nanovesicles. TEM image revealed spherical vesicles with no aggregates. Additionally, it showed enhanced drug release when compared to a drug suspension and also exhibited good stability for one month. Moreover, it showed higher brain Cmax, AUC0-24, and AUC0-∞ and plasma AUC0-24 and AUC0-∞ in comparison to drug suspension. It showed brain and plasma bioavailability enhancement of 153.15 and 179.85%, respectively, compared to the drug suspension. So, the optimum glycerosomal formula may be regarded as a promising carrier to enhance the oral bioavailability and brain delivery of Quetiapine fumarate.

19.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458277

RESUMEN

Our goal was to prepare Span 60-based elastic nanovesicles (spanlastics (SPLs)) of tacrolimus (TCR) using the adapted ethanol injection method, characterize them, and evaluate their ability to improve the transdermal permeation of the active substance. The impact of two different concentrations of penetration enhancers, namely, propylene glycol and oleic acid, on the entrapment efficiency, vesicle size, and zeta potential was assessed. Moreover, in vitro release through a semipermeable membrane and ex vivo penetration through hairless rat skin were performed. Morphological examination and pharmacokinetics were performed for one selected formulation (F3OA1). TCR-loaded SPLs were effectively formulated with two different concentrations of permeation enhancers, and the effect of these enhancers on their physicochemical properties differed in accordance with the concentration and kind of enhancer used. The results of in vitro release displayed a considerable (p < 0.05) enhancement compared to the suspension of the pure drug, and there was a correlation between the in vitro and ex vivo results. The selected TCR-loaded nanovesicles incorporated into a gel base showed appreciable advantages over the oral drug suspension and the TCR-loaded gel. Additionally, the pharmacokinetic parameters were significantly (p < 0.05) improved based on our findings. Moreover, the AUC0−7 ng·h/mL form F3 OA1 was 3.36-fold higher than that after the administration of the TCR oral suspension.

20.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35337145

RESUMEN

The purpose of the current study was to develop Brigatinib (BGT)-loaded nanospanlastics (BGT-loaded NSPs) (S1-S13) containing Span 60 with different edge activators (Tween 80 and Pluronic F127) and optimized based on the vesicle size, zeta potential (ZP), and percent entrapment efficiency (%EE) using Design-Expert® software. The optimum formula was recommended with desirability of 0.819 and composed of Span-60:Tween 80 at a ratio of 4:1 and 10 min as a sonication time (S13). It showed predicted EE% (81.58%), vesicle size (386.55 nm), and ZP (-29.51 mv). The optimized nanospanlastics (S13) was further coated with chitosan and further evaluated for Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro release, Transmission Electron Microscopy (TEM), stability and in-vitro cytotoxicity studies against H-1975 lung cancer cell lines. The DSC and XRD revealed complete encapsulation of the drug. TEM imagery revealed spherical nanovesicles with a smooth surface. Also, the coated formula showed high stability for three months in two different conditions. Moreover, it resulted in improved and sustained drug release than free BGT suspension and exhibited Higuchi kinetic release mechanism. The cytotoxic activity of BGT-loaded SPs (S13) was enhanced three times in comparison to free the BGT drug against the H-1975 cell lines. Overall, these results confirmed that BGT-loaded SPs could be a promising nanocarrier to improve the anticancer efficacy of BGT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA