Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36433027

RESUMEN

Graft copolymers of collagen and polyacrylamide (PAA) were synthesized in a suspension of acetic acid dispersion of fish collagen and acrylamide (AA) in the presence of tributylborane (TBB). The characteristics of the copolymers were determined using infrared spectroscopy and gel permeation chromatography (GPC). Differences in synthesis temperature between 25 and 60 °C had no significant effect on either proportion of graft polyacrylamide generated or its molecular weight. However, photomicrographs taken with the aid of a scanning electron microscope showed a breakdown of the fibrillar structure of the collagen within the copolymer at synthesis temperatures greater than 25 °C. The mechanical properties of the films and the cytotoxicity of the obtained copolymer samples were studied. The sample of a hybrid copolymer of collagen and PAA obtained at 60 °C has stronger mechanical properties compared to other tested samples. Its low cytotoxicity, when the monomer is removed, makes materials based on it promising in scaffold technologies.

2.
Mar Drugs ; 19(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34564164

RESUMEN

Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.


Asunto(s)
Colágeno/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Bovinos , Gadus morhua , Hidrólisis , Microscopía Electrónica de Rastreo , Ingeniería de Tejidos
3.
Bioact Mater ; 4: 334-345, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720490

RESUMEN

At present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis. Two differently originated collagens were used for the scaffold formation. During this work the structural and mechanical characteristics of the scaffold were studied. It was found that, depending on the origin of collagen, scaffolds possess differences in their structural and mechanical characteristics. Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells. Hence, scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA