Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(22)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36428985

RESUMEN

Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.


Asunto(s)
Ácidos Grasos , Neoplasias , Humanos , Ácidos Grasos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Antígenos CD36/metabolismo , Macrófagos/metabolismo
2.
Biomedicine (Taipei) ; 12(4): 9-19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36816174

RESUMEN

Over the last few decades, cancer has been regarded as an independent and self sustaining progression. The earliest hallmarks of cancer comprise of sustaining proliferative signalling, avoiding growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Nonetheless, two emerging hallmarks are being described: aberrant metabolic pathways and evasion of immune destruction. Changes in tumour cell metabolism are not restricted to tumour cells alone; the products of the altered metabolism have a direct impact on the activity of immune cells inside the tumour microenvironment, particularly tumour-associated macrophages (TAMs). The complicated process of cancer growth is orchestrated by metabolic changes dictating the tight mutual connection between these cells. Here, we discuss approaches to exploit the interaction of cancer cells' abnormal metabolic activity and TAMs. We also describe ways to exploit it by reprogramming fatty acid metabolism via TAMs.

3.
J Vis Exp ; (154)2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31885381

RESUMEN

Tumor-associated macrophages (TAMs) have been identified as an important component for tumor growth, invasion, metastasis, and resistance to cancer therapies. However, tumor-associated macrophages can be harmful to the tumor depending on the tumor microenvironment and can reversibly alter their phenotypic characteristics by either antagonizing the cytotoxic activity of immune cells or enhancing anti-tumor response. The molecular actions of macrophages and their interactions with tumor cells (e.g., phagocytosis) have not been extensively studied. Therefore, the interaction between immune cells (M1/M2-subtype TAM) and cancer cells in the tumor microenvironment is now a focus of cancer immunotherapy research. In the present study, a live cell coculture model of induced M1 macrophages and mouse mammary 4T1 carcinoma cells was developed to assess the phagocytic activity of macrophages using a time-lapse video feature using phase-contrast, fluorescent, and differential interference contrast (DIC) microscopy. The present method can observe and document multipoint live-cell imaging of phagocytosis. Phagocytosis of 4T1 cells by M1 macrophages can be observed using fluorescent microscopy before staining 4T1 cells with carboxyfluorescein succinimidyl ester (CFSE). The current publication describes how to coculture macrophages and tumor cells in a single imaging dish, polarize M1 macrophages, and record multipoint events of macrophages engulfing 4T1 cells during 13 h of coculture.


Asunto(s)
Neoplasias de la Mama/inmunología , Técnicas de Cocultivo/métodos , Macrófagos/inmunología , Fagocitosis/fisiología , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Microambiente Tumoral
4.
Materials (Basel) ; 12(19)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590332

RESUMEN

The aim was to isolate cellulose nanocrystals (CNC) from commercialized oil palm empty fruit bunch cellulose nanofibre (CNF) through sulphuric acid hydrolysis and explore its safeness as a potential nanocarrier. Successful extraction of CNC was confirmed through a field emission scanning electron microscope (FESEM) and attenuated total reflection Fourier transmission infrared (ATR-FTIR) spectrometry analysis. For subsequent cellular uptake study, the spherical CNC was covalently tagged with fluorescein isothiocyanate (FITC), resulting in negative charged FITC-CNC nanospheres with a dispersity (Ð) of 0.371. MTT assay revealed low degree cytotoxicity for both CNC and FITC-CNC against C6 rat glioma and NIH3T3 normal fibroblasts up to 50 µg/mL. FITC conjugation had no contribution to the particle's toxicity. Through confocal laser scanning microscope (CLSM), synthesized FITC-CNC manifested negligible cellular accumulation, indicating a poor non-selective adsorptive endocytosis into studied cells. Overall, an untargeted CNC-based nanosphere with less cytotoxicity that posed poor selectivity against normal and cancerous cells was successfully synthesized. It can be considered safe and suitable to be developed into targeted nanocarrier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA