Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39211177

RESUMEN

Flamenco (Flam) is the most prominent piRNA cluster locus expressed in Drosophila ovarian follicle cells, and it is required for female fertility to silence gypsy/mdg4 transposons. To determine how Flam is regulated, we used promoter-bashing reporter assays in OSS cells to uncover novel enhancer sequences within the first exons of Flam . We confirmed the enhancer sequence relevance in vivo with new Drosophila Flam deletion mutants of these regions that compromised Flam piRNA expression and lowered female fertility from activated transposons. Our proteomic analysis of proteins associated with these enhancer sequences discovered the transcription factor Traffic Jam (TJ). Tj knockdowns in OSS cells caused a decrease in Flam transcripts, Flam piRNAs, and multiple Piwi pathway genes. A TJ ChIP-seq analysis from whole flies and OSS cells confirmed TJ binding exactly at the enhancer that was deleted in the new Flam mutant as well as at multiple Piwi pathway gene enhancers. Interestingly, TJ also bound the Long Terminal Repeats of transposons that had decreased expression after Tj knockdowns in OSS cells. Our study reveals the integral role TJ plays in the on-going arms race between selfish transposons and their suppression by the host Piwi pathway and the Flam piRNA cluster locus.

2.
Anal Chem ; 96(29): 11959-11968, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990519

RESUMEN

Ion mobility-mass spectrometry (IM-MS) is a powerful analytical tool for structural characterization. IM measurement provides collision cross section (CCS) values that facilitate analyte identification. While CCS values can be directly calculated from mobility measurements obtained using drift tube ion mobility spectrometry (DT-IMS), this method has limited mobility resolution due to the practical constraints on the length of the ion drift path. Consequently, DT-IMS cannot differentiate analytes with similar mobilities or resolve fine mobility features of individual ions. Cyclic IMS (cIMS) instruments leverage a cyclic path enabled by traveling wave ion mobility (TWIM) technology and offer increased mobility solution to address this challenge. While TWIM devices must first be calibrated to enable CCS measurements, current calibration strategies are primarily tailored for single-pass analyses. This preference is partly attributed to the challenges associated with multipass calibration methods, which require both calibrants and analytes to experience the same number of passes. Achieving this consistency can be complicated due to factors like peak splitting and diffusion, and may not be feasible for online IM-MS analyses. A recent report employed average ion velocities obtained from multiple measurements under different separation pathlengths as a path length-independent metric for CCS calibration. However, the ability to exploit this averaging approach is limited by observed variation in ion drift time/velocity in these measurements. In this study, we introduce a novel calibration strategy designed for multipass cIMS analyses, directly targeting the root cause for the path length- and mobility-dependent variations in ion drift time. With this method, we demonstrate that CCS values derived from multipass measurements closely align with those obtained from single-pass analyses, with an average deviation of 0.1%. We apply this method to characterize four isomeric trisaccharides. Our approach not only results in excellent agreement between our measured cIMSCCS values and the reported DTCCS values, with an average difference of only 0.5%, but also allows us to effectively identify subtle mobility characteristics of each compound and determine their respective CCS values. This level of detail and accuracy was previously unattainable using DT-IMS or single-pass cIMS measurements. We developed an algorithm for reconstructing arrival time distribution in cases where wrap-around has resulted in peak splitting. Collectively, the new calibration strategy and the reconstruction procedure maintain reproducibility and precision in CCS measurements while largely eliminating the need for meticulous selection of separation times. We expect that our method will empower researchers to harness the high mobility resolution offered by multipass cIMS analyses without compromising the accuracy of CCS measurement, making it appropriate for straightforward use across a wide range of applications.

3.
Nat Commun ; 15(1): 6168, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039063

RESUMEN

Accurate glycopeptide identification in mass spectrometry-based glycoproteomics is a challenging problem at scale. Recent innovation has been made in increasing the scope and accuracy of glycopeptide identifications, with more precise uncertainty estimates for each part of the structure. We present a dynamically adapting relative retention time model for detecting and correcting ambiguous glycan assignments that are difficult to detect from fragmentation alone, a layered approach to glycopeptide fragmentation modeling that improves N-glycopeptide identification in samples without compromising identification quality, and a site-specific method to increase the depth of the glycoproteome confidently identifiable even further. We demonstrate our techniques on a set of previously published datasets, showing the performance gains at each stage of optimization. These techniques are provided in the open-source glycomics and glycoproteomics platform GlycReSoft available at https://github.com/mobiusklein/glycresoft .


Asunto(s)
Glicómica , Glicopéptidos , Proteómica , Glicopéptidos/química , Glicopéptidos/análisis , Glicómica/métodos , Proteómica/métodos , Humanos , Polisacáridos/química , Espectrometría de Masas en Tándem/métodos , Programas Informáticos , Glicoproteínas/química , Espectrometría de Masas/métodos
4.
Mol Cell Proteomics ; 23(8): 100803, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880242

RESUMEN

Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.


Asunto(s)
Cocaína , Cuerpo Estriado , Glicómica , Metanfetamina , Ratones Endogámicos C57BL , Proteómica , Animales , Cocaína/farmacología , Metanfetamina/farmacología , Masculino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Ratones , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Heparitina Sulfato/metabolismo , Proteoma/metabolismo
5.
Cell Rep ; 43(5): 114112, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38676925

RESUMEN

Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.


Asunto(s)
Matriz Extracelular , Potenciación a Largo Plazo , Memoria , Plasticidad Neuronal , Animales , Matriz Extracelular/metabolismo , Potenciación a Largo Plazo/fisiología , Ratones , Plasticidad Neuronal/fisiología , Memoria/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Ratones Endogámicos C57BL , Masculino , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Hipocampo/metabolismo , Hipocampo/fisiología
6.
Bioinform Adv ; 4(1): vbae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384861

RESUMEN

Motivation: Glycosylation elaborates the structures and functions of glycoproteins; glycoproteins are common post-translationally modified proteins and are heterogeneous and non-deterministically synthesized as an evolutionarily driven mechanism that elaborates the functions of glycosylated gene products. Glycoproteins, accounting for approximately half of all proteins, require specialized proteomics data analysis methods due to micro- and macro-heterogeneities as a given glycosite can be divided into several glycosylated forms, each of which must be quantified. Sampling of heterogeneous glycopeptides is limited by mass spectrometer speed and sensitivity, resulting in missing values. In conjunction with the low sample size inherent to glycoproteomics, a specialized toolset is needed to determine if observed changes in glycopeptide abundances are biologically significant or due to data quality limitations. Results: We developed an R package, Relative Assessment of m/z Identifications by Similarity (RAMZIS), that uses similarity metrics to guide researchers to a more rigorous interpretation of glycoproteomics data. RAMZIS uses a permutation test to generate contextual similarity, which assesses the quality of mass spectral data and outputs a graphical demonstration of the likelihood of finding biologically significant differences in glycosylation abundance datasets. Investigators can assess dataset quality, holistically differentiate glycosites, and identify which glycopeptides are responsible for glycosylation pattern change. RAMZIS is validated by theoretical cases and a proof-of-concept application. RAMZIS enables comparison between datasets too stochastic, small, or sparse for interpolation while acknowledging these issues in its assessment. Using this tool, researchers will be able to rigorously define the role of glycosylation and the changes that occur during biological processes. Availability and implementation: https://github.com/WillHackett22/RAMZIS.

7.
Anal Bioanal Chem ; 416(9): 2359-2369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358530

RESUMEN

Success of mass spectrometry characterization of the proteome of single cells allows us to gain a greater understanding than afforded by transcriptomics alone but requires clear understanding of the tradeoffs between analytical throughput and precision. Recent advances in mass spectrometry acquisition techniques, including updated instrumentation and sample preparation, have improved the quality of peptide signals obtained from single cell data. However, much of the proteome remains uncharacterized, and higher throughput techniques often come at the expense of reduced sensitivity and coverage, which diminish the ability to measure proteoform heterogeneity, including splice variants and post-translational modifications, in single cell data analysis. Here, we assess the growing body of ultrasensitive single-cell approaches and their tradeoffs as researchers try to balance throughput and precision in their experiments.


Asunto(s)
Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Péptidos , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional
8.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206681

RESUMEN

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Asunto(s)
Glicopéptidos , Espectrometría de Masas en Tándem , Glicopéptidos/análisis , Espectrometría de Masas en Tándem/métodos , Electrones , Péptidos/química , Polisacáridos/química
9.
FEBS Lett ; 598(4): 390-399, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105115

RESUMEN

Insulin-responsive vesicles (IRVs) deliver the glucose transporter Glut4 to the plasma membrane in response to activation of the insulin signaling cascade: insulin receptor-IRS-PI3 kinase-Akt-TBC1D4-Rab10. Previous studies have shown that Akt, TBC1D4, and Rab10 are compartmentalized on the IRVs. Although functionally significant, the mechanism of Akt association with the IRVs remains unknown. Using pull-down assays, immunofluorescence microscopy, and cross-linking, we have found that Akt may be recruited to the IRVs via the interaction with the juxtamembrane domain of the cytoplasmic C terminus of sortilin, a major IRV protein. Overexpression of full-length sortilin increases insulin-stimulated phosphorylation of TBC1D4 and glucose uptake in adipocytes, while overexpression of the cytoplasmic tail of sortilin has the opposite effect. Our findings demonstrate that the IRVs represent both a scaffold and a target of insulin signaling.


Asunto(s)
Insulina , Proteínas Proto-Oncogénicas c-akt , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo
10.
Mass Spectrom Rev ; 43(1): 193-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36177493

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteómica , Espectrometría de Masas , Nasofaringe
11.
Anal Bioanal Chem ; 415(28): 6887-6888, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37787855

Asunto(s)
Genómica
12.
Alzheimers Res Ther ; 15(1): 185, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891618

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/patología , Arteria Cerebral Anterior/metabolismo , Arteria Cerebral Anterior/patología , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Colágeno/metabolismo
13.
Anal Bioanal Chem ; 415(27): 6611-6613, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37728748
14.
Anal Bioanal Chem ; 415(28): 6995-7009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37728749

RESUMEN

Proteoglycans are a small but diverse family of proteins that play a wide variety of roles at the cell surface and in the extracellular matrix. In addition to their glycosaminoglycan (GAG) chains, they are N- and O-glycosylated. All of these types of glycosylation are crucial to their function but present a considerable analytical challenge. We describe the combination of serial proteolysis followed by the application of higher-energy collisional dissociation (HCD) and electron transfer/higher-energy collisional dissociation (EThcD) to optimize protein sequence coverage and glycopeptide identification from proteoglycans. In many cases, the use of HCD alone allows the identification of more glycopeptides. However, the localization of glycoforms on multiply glycosylated peptides has remained elusive. We demonstrate the use of EThcD for the confident assignment of glycan compositions on multiply glycosylated peptides. Dense glycosylation on proteoglycans is key to their biological function; thus, developing tools to identify and quantify doubly glycosylated peptides is of interest. Additionally, glycoproteomics searches identify glycopeptides in otherwise poorly covered regions of proteoglycans. The development of these and other analytical tools may permit glycoproteomic similarity comparisons in biological samples.


Asunto(s)
Matriz Extracelular , Proteoglicanos , Proteolisis , Glicosaminoglicanos , Glicopéptidos
15.
Res Sq ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693508

RESUMEN

Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. A total of 28 brain donor participants with human anterior cerebral artery (ACA) from controls and pathologically diagnosed AD groups (early - Braak stages I-II; intermediate - Braak stages III-IV; and advanced - Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate& advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameter of ACA remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate& advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.

16.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398011

RESUMEN

Motivation: Glycosylation elaborates the structures and functions of glycoproteins; glycoproteins are common post-translationally modified proteins and are heterogeneous and non-deterministically syn-thesized as an evolutionarily driven mechanism that elaborates the functions of glycosylated gene products. While glycoproteins account for approximately half of all proteins, their macro- and micro-heterogeneity requires specialized proteomics data analysis methods as a given glycosite can be divided into several glycosylated forms, each of which must be quantified. Sampling of heterogeneous glycopeptides is limited by mass spectrometer speed and sensitivity, resulting in missing values. In conjunction with the low sample size inherent to glycoproteomics, this necessitated specialized statistical metrics to identify if observed changes in glycopeptide abundances are biologically significant or due to data quality limitations. Results: We developed an R package, Relative Assessment of m/z Identifications by Similarity (RAMZIS), that uses similarity metrics to guide biomedical researchers to a more rigorous interpretation of glycoproteomics data. RAMZIS uses contextual similarity to assess the quality of mass spectral data and generates graphical output that demonstrates the likelihood of finding biologically significant differences in glycosylation abundance dataset. Investigators can assess dataset quality, holistically differentiate glycosites, and identify which glycopeptides are responsible for glycosylation pattern expression change. Herein RAMZIS approach is validated by theoretical cases and by a proof-of-concept application. RAMZIS enables comparison between datasets too stochastic, small, or sparse for interpolation while acknowledging these issues in its assessment. Using our tool, researchers will be able to rigor-ously define the role of glycosylation and the changes that occur during biological processes.

17.
Chem Sci ; 14(24): 6695-6704, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350811

RESUMEN

Comprehensive de novo glycan sequencing remains an elusive goal due to the structural diversity and complexity of glycans. Present strategies employing collision-induced dissociation (CID) and higher energy collisional dissociation (HCD)-based multi-stage tandem mass spectrometry (MSn) or MS/MS combined with sequential exoglycosidase digestions are inherently low-throughput and difficult to automate. Compared to CID and HCD, electron transfer dissociation (ETD) and electron capture dissociation (ECD) each generate more cross-ring cleavages informative about linkage positions, but electronic excitation dissociation (EED) exceeds the information content of all other methods and is also applicable to analysis of singly charged precursors. Although EED can provide extensive glycan structural information in a single stage of MS/MS, its performance has largely been limited to FTICR MS, and thus it has not been widely adopted by the glycoscience research community. Here, the effective performance of EED MS/MS was demonstrated on a hybrid Orbitrap-Omnitrap QE-HF instrument, with high sensitivity, fragmentation efficiency, and analysis speed. In addition, a novel EED MS2-guided MS3 approach was developed for detailed glycan structural analysis. Automated topology reconstruction from MS2 and MS3 spectra could be achieved with a modified GlycoDeNovo software. We showed that the topology and linkage configurations of the Man9GlcNAc2 glycan can be accurately determined from first principles based on one EED MS2 and two CID-EED MS3 analyses, without reliance on biological knowledge, a structure database or a spectral library. The presented approach holds great promise for autonomous, comprehensive and de novo glycan sequencing.

18.
Anal Bioanal Chem ; 415(4): 527-532, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36602567

RESUMEN

The 2022 Nobel Prize in Chemistry recognized the development of biorthogonal chemical ligation reactions known as click chemistry in biomedicine. This concept has catalyzed significant progress in sensing and diagnosis, chemical biology, materials chemistry, and drug discovery and delivery. In proteomics, the ability to incorporate a click tag into proteins has propelled development of powerful new methods for selective enrichment of protein complexes that inform understanding of protein networks. It also has had a strong influence on the ability to enrich for protein post-translational modifications. This feature article summarizes the impacts of biorthogonal click chemistry on proteomics.


Asunto(s)
Química Clic , Premio Nobel , Química Clic/métodos , Proteínas , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Química
19.
Mass Spectrom Rev ; 42(5): 1848-1875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35719114

RESUMEN

The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.

20.
J Proteome Res ; 22(1): 62-77, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36480915

RESUMEN

N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Humanos , Hemaglutininas , Subtipo H7N3 del Virus de la Influenza A/metabolismo , Glicoproteínas/análisis , Glicopéptidos/análisis , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA