Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mol Pharm ; 18(9): 3578-3587, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34428059

RESUMEN

While theophylline has been extensively studied with multiple polymorphs discovered, there is still currently no conclusive structure for the metastable theophylline form III. In this present work, by combining more widely used techniques such as X-ray diffraction and thermogravimetric analysis with more emerging techniques like low-frequency Raman and terahertz time-domain spectroscopy, to analyze the structure and dynamics of a crystalline system, it was possible to provide further evidence that the form III structure has a theophylline monohydrate structure with the water molecules removed. Solid-state density functional theory simulations were paramount in proving that this proposed structure is correct and explain how vibrational modes within the crystal structures feature and govern polymorphic transitions and the metastable form III. Through the insight provided by both simulated and experimental results, it was possible to decisively conclude the elusive crystal structure of theophylline form III. It was also shown that the correct space group for theophylline monohydrate is not P21/n but, in fact, Pc.


Asunto(s)
Teofilina/química , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Espectrometría Raman , Espectroscopía de Terahertz , Termogravimetría , Vibración , Difracción de Rayos X
2.
Phys Chem Chem Phys ; 22(35): 19672-19679, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32830208

RESUMEN

Quinacridone and its substituted analogs are pigments widely used in art and industry. The temperature dependence of the crystal structures of two quinacridone polymorphs (ß and γ), along with the common variant 2,9-dimethylquinacridone, were investigated using powder X-ray diffraction and terahertz spectroscopy. These were then compared with solid-state density functional theory simulations of both structures and vibrations. X-ray patterns were collected at eight temperatures in the range 13-298 K and terahertz spectra at fifteen temperatures in the range 20-300 K. Simulations were at absolute zero and at appropriate expansions to model room temperature. It was found that some of the powder X-ray diffraction features in only ß-quinacridone (15.7°, 19.7° and 31.2° at 13 K) underwent anomalous shifting with temperature change. We attribute this to the unique coplanar hydrogen bonding pattern of ß-quinacridone compared to the other solids, with the unusual diffraction peaks originating from crystallographic planes perpendicular to the a axis intermolecular hydrogen bonds. This observation coincides with a contraction of the a axis with heating and results from its relatively weak N-HO hydrogen bonds and significant C-HH-C repulsions. Associated with this anomalous contraction, for ß-quinacridone only spectral peaks are seen to increase in energy with temperature.

3.
Chem Sci ; 10(5): 1332-1341, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30809348

RESUMEN

The thermosalient behavior of 1,2,4,5-tetrabromobenzene (TBB) is related to a temperature-induced polymorphic structural change. The mechanism behind the phase transition has been investigated in this work using low-frequency (10-250 cm-1) Raman spectroscopy and solid-state density functional theory simulations. Careful adjustments of the probing laser power permitted thermal control of the polymorph populations and enabled high-quality Raman vibrational spectra to be obtained for both the ß (low temperature) and γ (high temperature) forms of TBB. Numerous well-defined vibrational features appear in the Raman spectra of both polymorphs which could be assigned to specific motions of the solid-state TBB molecules. It was discovered that the lowest-frequency vibration at 15.5 cm-1 in ß-TBB at 291 K is a rotational mode that functions as a gateway for inducing the polymorphic phase transition to γ-TBB, and serves as the initiating step in the storage of mechanical strain for subsequent macroscopic release. Computationally mapping the potential energy surface along this vibrational coordinate reveals that the two TBB polymorphs are separated by a 2.40 kJ mol-1 barrier and that γ-TBB exhibits an enhanced cohesion energy that stabilizes its structure.

4.
Chem Commun (Camb) ; 54(45): 5776-5779, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29781477

RESUMEN

In ZIF-8 and its cobalt analogue ZIF-67, the imidazolate methyl-groups, which point directly into the void space, have been shown to freely rotate - even down to cryogenic temperatures. Using a combination of experimental terahertz time-domain spectroscopy, low-frequency Raman spectroscopy, and state-of-the-art ab initio simulations, the methyl-rotor dynamics in ZIF-8 and ZIF-67 are fully characterized within the context of a quantum-mechanical hindered-rotor model. The results lend insight into the fundamental origins of the experimentally observed methyl-rotor dynamics, and provide valuable insight into the nature of the weak interactions present within this important class of materials.

5.
J Phys Chem A ; 121(18): 3423-3429, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28445038

RESUMEN

Through a combined experimental and theoretical investigation we determine that the fundamental modes of three quinacridones fall in the terahertz spectral range (1-10 THz, ∼30-300 cm-1). In each spectrum the terahertz resonances correspond to wagging, rocking, or twisting of the quinacridone rings, with the most intense absorption being an in-plane rocking vibration of the carbonyl oxygens. In spite of these spectral similarities, we demonstrate that terahertz measurements readily differentiate ß-quinacridone, γ-quinacridone, and 2,9-dimethylquinacridone. The spectrum of ß-quinacridone has a group of closely spaced modes at ∼4 THz, whereas in contrast the spectrum of γ-quinacridone displays a widely spaced series of modes spread over the range ∼1-5 THz. Both of these have the strongest mode at ∼9 THz, whereas in contrast 2,9-dimethylquinacridone exhibits the strongest mode at ∼7 THz. Because quinacridones are the basis of widely used synthetic pigments of relatively recent origin, our findings offer promising applications in the identification and dating of modern art.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA