Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioessays ; 46(5): e2400011, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403725

RESUMEN

How chromatin bridges are detected by the abscission checkpoint during mammalian cell division is unknown. Here, we discuss recent findings from our lab showing that the DNA topoisomerase IIα (Top2α) enzyme binds to catenated ("knotted") DNA next to the midbody and forms abortive Top2-DNA cleavage complexes (Top2ccs) on chromatin bridges. Top2ccs are then processed by the proteasome to promote localization of the DNA damage sensor protein Rad17 to Top2-generated double-strand DNA ends on DNA knots. In turn, Rad17 promotes local recruitment of the MRN protein complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin bridge breakage in cytokinesis.


Asunto(s)
Cromatina , Citocinesis , ADN-Topoisomerasas de Tipo II , Proteínas de Unión al ADN , Humanos , ADN-Topoisomerasas de Tipo II/metabolismo , Citocinesis/fisiología , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ADN/metabolismo , Transducción de Señal
2.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37638884

RESUMEN

In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.


Asunto(s)
Puntos de Control del Ciclo Celular , Cromatina , ADN-Topoisomerasas de Tipo II , ADN , Humanos , Proteínas de Ciclo Celular/genética , Núcleo Celular , Cromatina/genética , Rotura Cromosómica , Citocinesis , ADN/genética , ADN-Topoisomerasas de Tipo II/genética
4.
Cells ; 10(12)2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34943860

RESUMEN

The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.


Asunto(s)
Puntos de Control del Ciclo Celular , Inestabilidad Cromosómica , Animales , Cromatina/metabolismo , Citocinesis , Humanos , Modelos Biológicos , Transducción de Señal
5.
Mol Cell Oncol ; 8(2): 1877999, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33860082

RESUMEN

In response to chromatin bridges, the chromosomal passenger complex (CPC) delays completion of cytokinesis (abscission) to prevent chromosome breakage. Here, we discuss recent findings from our lab showing that an ATM-CHK2-INCENP pathway imposes the abscission checkpoint in human cells by regulating CPC midbody-localization.

6.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33355621

RESUMEN

During cell division, in response to chromatin bridges, the chromosomal passenger complex (CPC) delays abscission to prevent chromosome breakage or tetraploidization. Here, we show that inhibition of ATM or Chk2 kinases impairs CPC localization to the midbody center, accelerates midbody resolution in normally segregating cells, and correlates with premature abscission and chromatin breakage in cytokinesis with trapped chromatin. In cultured human cells, ATM activates Chk2 at late midbodies. In turn, Chk2 phosphorylates human INCENP-Ser91 to promote INCENP binding to Mklp2 kinesin and CPC localization to the midbody center through Mklp2 association with Cep55. Expression of truncated Mklp2 that does not bind to Cep55 or nonphosphorylatable INCENP-Ser91A impairs CPC midbody localization and accelerates abscission. In contrast, expression of phosphomimetic INCENP-Ser91D or a chimeric INCENP protein that is targeted to the midbody center rescues the abscission delay in Chk2-deficient or ATM-deficient cells. Furthermore, the Mre11-Rad50-Nbs1 complex is required for ATM activation at the midbody in cytokinesis with chromatin bridges. These results identify an ATM-Chk2-INCENP pathway that imposes the abscission checkpoint by regulating CPC midbody localization.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Citocinesis , Transducción de Señal , Aurora Quinasa B/metabolismo , Proliferación Celular , Quinasa de Punto de Control 2/antagonistas & inhibidores , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Complejos Multiproteicos/metabolismo , Mutación/genética , Fosforilación
7.
FEBS J ; 287(9): 1700-1721, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027459

RESUMEN

The DNA damage response recognizes DNA lesions and coordinates a cell cycle arrest with the repair of the damaged DNA, or removal of the affected cells to prevent the passage of genetic alterations to the next generation. The mitotic cell division, on the other hand, is a series of processes that aims to accurately segregate the genomic material from the maternal to the two daughter cells. Despite their great importance in safeguarding genomic integrity, the DNA damage response and the mitotic cell division were long viewed as unrelated processes, mainly because animal cells that are irradiated during mitosis continue cell division without repairing the broken chromosomes. However, recent studies have demonstrated that DNA damage proteins play an important role in mitotic cell division. This is performed through regulation of the onset of mitosis, mitotic spindle formation, correction of misattached kinetochore-microtubules, spindle checkpoint signaling, or completion of cytokinesis (abscission), in the absence of DNA damage. In this review, we summarize the roles of DNA damage proteins in unperturbed mitosis, analyze the molecular mechanisms involved, and discuss the potential implications of these findings in cancer therapy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Inestabilidad Genómica , Mitosis/genética , Animales , División Celular , Humanos
8.
Cell Mol Life Sci ; 76(21): 4291-4307, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31302750

RESUMEN

In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called "the abscission checkpoint" and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.


Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Citocinesis/fisiología , Animales , Aurora Quinasa B/metabolismo , Aurora Quinasa B/fisiología , Genes cdc/fisiología , Humanos , Transducción de Señal
9.
Mol Cell Oncol ; 5(3): e1445944, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250900

RESUMEN

The mitotic spindle checkpoint delays anaphase onset until all chromosomes have achieved stable kinetochore-microtubule attachments. Here, we discuss recent findings showing that CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery, protects human cells against chromosome missegregation by promoting localisation of the ROD-ZW10-ZWILCH (RZZ) spindle checkpoint complex to unattached kinetochores.

10.
Chromosoma ; 127(4): 461-473, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968190

RESUMEN

Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1-77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1-Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Proteínas del Citoesqueleto , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Prometafase/fisiología
11.
J Cell Biol ; 217(9): 3071-3089, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29954829

RESUMEN

In cytokinesis with chromatin bridges, cells delay abscission and retain actin patches at the intercellular canal to prevent chromosome breakage. In this study, we show that inhibition of Src, a protein-tyrosine kinase that regulates actin dynamics, or Chk1 kinase correlates with chromatin breakage and impaired formation of actin patches but not with abscission in the presence of chromatin bridges. Chk1 is required for optimal localization and complete activation of Src. Furthermore, Chk1 phosphorylates human Src at serine 51, and phosphorylated Src localizes to actin patches, the cell membrane, or the nucleus. Nonphosphorylatable mutation of S51 to alanine reduces Src catalytic activity and impairs formation of actin patches, whereas expression of a phosphomimicking Src-S51D protein rescues actin patches and prevents chromatin breakage in Chk1-deficient cells. We propose that Chk1 phosphorylates Src-S51 to fully induce Src kinase activity and that phosphorylated Src promotes formation of actin patches and stabilizes chromatin bridges. These results identify proteins that regulate formation of actin patches in cytokinesis.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cromatina/metabolismo , Rotura Cromosómica , Citocinesis/fisiología , Familia-src Quinasas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Células HeLa , Humanos , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Familia-src Quinasas/genética
13.
J Cell Biol ; 217(3): 861-876, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29362225

RESUMEN

The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cinetocoros/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Huso Acromático/genética
14.
Nat Commun ; 7: 11451, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126587

RESUMEN

When chromatin is trapped at the intercellular bridge, cells delay completion of cytokinesis (abscission) to prevent chromosome breakage. Here we show that inhibition of Cdc-like kinases (Clks) 1, 2 or 4 accelerates midbody resolution in normally segregating cells and correlates with premature abscission, chromatin breakage and generation of DNA damage in cytokinesis with trapped chromatin. Clk1, Clk2 and Clk4 localize to the midbody in an interdependent manner, associate with Aurora B kinase and are required for Aurora B-serine 331 (S331) phosphorylation and complete Aurora B activation in late cytokinesis. Phosphorylated Aurora B-S331 localizes to the midbody centre and is required for phosphorylation and optimal localization of the abscission protein Chmp4c. In addition, expression of phosphomimetic mutants Aurora B-S331E or Chmp4c-S210D delays midbody disassembly and prevents chromatin breakage in Clk-deficient cells. We propose that Clks 1, 2 and 4 impose the abscission checkpoint by phosphorylating Aurora B-S331 at the midbody.


Asunto(s)
Aurora Quinasa B/genética , Cromatina/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Segregación Cromosómica , Clonación Molecular , Citocinesis/genética , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
16.
J Cell Sci ; 127(Pt 18): 3902-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015292

RESUMEN

Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM.


Asunto(s)
Cromatina/metabolismo , Proteínas Quinasas/metabolismo , RecQ Helicasas/química , RecQ Helicasas/metabolismo , Serina/metabolismo , Secuencias de Aminoácidos , Anafase , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteolisis , RecQ Helicasas/genética , Serina/genética
17.
J Cell Biol ; 205(3): 339-56, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24798733

RESUMEN

The spindle checkpoint delays exit from mitosis in cells with spindle defects. In this paper, we show that Chk2 is required to delay anaphase onset when microtubules are completely depolymerized but not in the presence of relatively few unattached kinetochores. Mitotic exit in Chk2-deficient cells correlates with reduced levels of Mps1 protein and increased Cdk1-tyrosine 15 inhibitory phosphorylation. Chk2 localizes to kinetochores and is also required for Aurora B-serine 331 phosphorylation in nocodazole or unperturbed early prometaphase. Serine 331 phosphorylation contributed to prometaphase accumulation in nocodazole after partial Mps1 inhibition and was required for spindle checkpoint establishment at the beginning of mitosis. In addition, expression of a phosphomimetic S331E mutant Aurora B rescued chromosome alignment or segregation in Chk2-deficient cells. We propose that Chk2 stabilizes Mps1 and phosphorylates Aurora B-serine 331 to prevent mitotic exit when most kinetochores are unattached. These results highlight mechanisms of an essential function of Chk2 in mitosis.


Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Cinetocoros/enzimología , Mitosis , Anafase , Animales , Aurora Quinasa B/metabolismo , Aves , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/deficiencia , Quinasa de Punto de Control 2/genética , Segregación Cromosómica , Regulación de la Expresión Génica , Células HCT116 , Humanos , Proteínas Mad2/metabolismo , Microtúbulos/enzimología , Mutagénesis Sitio-Dirigida , Nocodazol/farmacología , Fosforilación , Mutación Puntual , Prometafase , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , Serina , Factores de Tiempo , Transfección , Moduladores de Tubulina/farmacología , Tirosina
18.
J Cell Sci ; 126(Pt 5): 1235-46, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23321637

RESUMEN

If uncorrected, merotelic kinetochore attachments can induce mis-segregated chromosomes in anaphase. We show that checkpoint kinase 1 (Chk1) protects vertebrate cells against merotelic attachments and lagging chromosomes and is required for correction of merotelic attachments during a prolonged metaphase. Decreased Chk1 activity leads to hyper-stable kinetochore microtubules, unstable binding of MCAK, Kif2b and Mps1 to centromeres or kinetochores and reduced phosphorylation of Hec1 by Aurora-B. Phosphorylation of Aurora-B at serine 331 (Ser331) by Chk1 is high in prometaphase and decreases significantly in metaphase cells. We propose that Ser331 phosphorylation is required for optimal localization of MCAK, Kif2b and Mps1 to centromeres or kinetochores and for Hec1 phosphorylation. Furthermore, inhibition of Mps1 activity diminishes initial recruitment of MCAK and Kif2b to centromeres or kinetochores, impairs Hec1 phosphorylation and exacerbates merotelic attachments in Chk1-deficient cells. We propose that Chk1 and Mps1 jointly regulate Aurora-B, MCAK, Kif2b and Hec1 to correct merotelic attachments. These results suggest a role for Chk1 and Mps1 in error correction.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa B , Aurora Quinasas , Western Blotting , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Centrómero/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/efectos de los fármacos , Leupeptinas/farmacología , Mitosis/genética , Mitosis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Huso Acromático/efectos de los fármacos
19.
J Cell Biol ; 195(3): 449-66, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22024163

RESUMEN

Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Secuencia de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Células CHO , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cricetinae , Activación Enzimática , Humanos , Cinetocoros/metabolismo , Microscopía Fluorescente , Mitosis , Datos de Secuencia Molecular , Paclitaxel/farmacología , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo
20.
EMBO Rep ; 8(6): 603-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17468739

RESUMEN

Centrosomal abnormalities are frequently observed in cancers and in cells with defective DNA repair. Here, we used light and electron microscopy to show that DNA damage induces centrosome amplification, not fragmentation, in human cells. Caffeine abrogated this amplification in both ATM (ataxia telangiectasia, mutated)- and ATR (ATM and Rad3-related)-defective cells, indicating a complementary role for these DNA-damage-responsive kinases in promoting centrosome amplification. Inhibition of checkpoint kinase 1 (Chk1) by RNA-mediated interference or drug treatment suppressed DNA-damage-induced centrosome amplification. Radiation-induced centrosome amplification was abrogated in Chk1(-/-) DT40 cells, but occurred at normal levels in Chk1(-/-) cells transgenically expressing Chk1. Expression of kinase-dead Chk1, or Chk1S345A, through which the phosphatidylinositol-3-kinase cannot signal, failed to restore centrosome amplification, showing that signalling to Chk1 and Chk1 catalytic activity are necessary to promote centrosome overduplication after DNA damage.


Asunto(s)
Centrosoma/metabolismo , Daño del ADN , Proteínas Quinasas/metabolismo , Animales , Ciclo Celular/efectos de la radiación , Línea Celular , Centrosoma/efectos de la radiación , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Humanos , Radiación Ionizante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA