Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.930
Filtrar
1.
Biomaterials ; 313: 122772, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190942

RESUMEN

Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.


Asunto(s)
Antibacterianos , Ácido Poliglutámico , Plata , Titanio , Animales , Titanio/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Plata/química , Plata/farmacología , Propiedades de Superficie , Nanotubos/química , Células RAW 264.7 , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Oseointegración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Cicatrización de Heridas/efectos de los fármacos , Prótesis e Implantes
2.
World J Stem Cells ; 16(8): 773-779, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39219726

RESUMEN

In this editorial, we delved into the article titled "Cellular preconditioning and mesenchymal stem cell ferroptosis." This groundbreaking study underscores a pivotal discovery: Ferroptosis, a type of programmed cell death, drastically reduces the viability of donor mesenchymal stem cells (MSCs) after engraftment, thereby undermining the therapeutic value of cell-based therapies. Furthermore, the article proposes that by manipulating ferroptosis mechanisms through preconditioning, we can potentially enhance the survival rate and functionality of MSCs, ultimately amplifying their therapeutic potential. Given the crucial role ferroptosis plays in shaping the therapeutic outcomes of MSCs, we deem it imperative to further investigate the intricate interplay between programmed cell death and the therapeutic effectiveness of MSCs.

3.
Front Plant Sci ; 15: 1446288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220012

RESUMEN

Introduction: Grape is of high economic value. Colletotrichum viniferum, a pathogen causing grape ripe rot and leaf spot, threatens grape production and quality. Methods: This study investigates the interplay between C. viniferum by Cytological study and transcriptome sequencing. Results: Different grapevine germplasms, V. vinifera cv. Thompson Seedless (TS), V. labrusca accession Beaumont (B) and V. piasezkii Liuba-8 (LB-8) were classified as highly sensitive, moderate resistant and resistant to C. viniferum, respectively. Cytological study analysis reveals distinct differences between susceptible and resistant grapes post-inoculation, including faster pathogen development, longer germination tubes, normal appressoria of C. viniferum and absence of white secretions in the susceptible host grapevine. To understand the pathogenic mechanisms of C. viniferum, transcriptome sequencing was performed on the susceptible grapevine "TS" identifying 236 differentially expressed C. viniferum genes. These included 56 effectors, 36 carbohydrate genes, 5 P450 genes, and 10 genes involved in secondary metabolism. Fungal effectors are known as pivotal pathogenic factors that modulate plant immunity and affect disease development. Agrobacterium-mediated transient transformation in Nicotiana benthamiana screened 10 effectors (CvA13877, CvA01508, CvA05621, CvA00229, CvA07043, CvA05569, CvA12648, CvA02698, CvA14071 and CvA10999) that inhibited INF1 (infestans 1, P. infestans PAMP elicitor) induced cell death and 2 effectors (CvA02641 and CvA11478) that induced cell death. Additionally, transcriptome analysis of "TS" in response to C. viniferum identified differentially expressed grape genes related to plant hormone signaling (TGA, PR1, ETR, and ERF1/2), resveratrol biosynthesis genes (STS), phenylpropanoid biosynthesis genes (PAL and COMT), photosynthetic antenna proteins (Lhca and Lhcb), transcription factors (WRKY, NAC, MYB, ERF, GATA, bHLH and SBP), ROS (reactive oxygen species) clearance genes (CAT, GSH, POD and SOD), and disease-related genes (LRR, RPS2 and GST). Discussion: This study highlights the potential functional diversity of C. viniferum effectors. Our findings lay a foundation for further research of infection mechanisms in Colletotrichum and identification of disease response targets in grape.

4.
ACS Omega ; 9(34): 36389-36397, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220502

RESUMEN

Lutein (LT) is a natural carotenoid and is widely used for its vision protection and antioxidant activity. However, the long-chain polyene structure makes lutein sensitive to light and oxygen and poses many difficulties in the production, processing, and storage. In addition, the special chemical structure of LT leads to low solubility and bioavailability. In this study, we propose an efficient solution to address these issues. A cocrystal of LT with adipic acid (LT-APC) was obtained for the first time. The cocrystals were fully characterized. After cocrystallization, the melting point of marketed LT was increased. The chemical stability of LT was significantly improved, and the influence of impurities on stability was limited. Dissolution experiments were performed in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) and the cocrystal generated a much higher apparent solubility. To deepen insight into the mechanisms underlying the cocrystal's improved solubility, wettability tests were performed by contact angle determination and film flotation methods. The cocrystal presented better wettability than the marketed LT. Finally, pharmacokinetic studies of marketed LT and its cocrystal were conducted in rats. The results showed that the cocrystal exhibited 3.4 times higher C max and 2.2 times higher AUC at a single dose compared with marketed LT.

5.
Emerg Med Int ; 2024: 4861308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220548

RESUMEN

Objective: To explore the value of the injury severity score (ISS) and the new injury severity score (NISS) for evaluating injuries and predicting complications (pneumonia and respiratory failure) and poor prognoses (in-hospital tracheal intubation, extended length of hospital stay, ICU admission, prolonged ICU stay, and death) in patients with thoracic trauma. Methods: The data of consecutive patients with thoracic trauma who were admitted to the department of cardiothoracic surgery of a tertiary hospital between January 2018 and December 2021 were retrospectively collected. ISS and NISS were calculated for each patient. The study outcomes were complications and poor prognoses. The differences in ISS and NISS between patients with complications and poor prognoses and patients without the abovementioned conditions were compared using the Mann‒Whitney U test. Discrimination and calibration of ISS and NISS in predicting outcomes were compared using the area under the receiver operating characteristic (ROC) curve (AUC) and Hosmer‒Lemeshow (H-L) statistic. Results: A total of 310 patients were included. ISS and NISS of patients with complications and poor prognoses were greater than those of patients without complications and poor prognoses, respectively. The discrimination of ISS in predicting pneumonia, respiratory failure, in-hospital tracheal intubation, extended length of hospital stay, ICU admission, prolonged ICU stay, and death (AUCs: 0.609, 0.721, 0.848, 0.784, 0.763, 0.716, and 0.804, respectively) was not statistically significantly different from that of NISS in predicting the corresponding outcomes (AUCs: 0.628, 0.712, 0.795, 0.767, 0.750, 0.750, and 0.818, respectively). ISS showed better calibration than NISS for predicting pneumonia, respiratory failure, in-hospital tracheal intubation, extended length of hospital stay, and ICU admission but worse calibration for predicting prolonged ICU stay and death. Conclusion: ISS and NISS are both suitable for injury evaluation. There was no statistically significant difference in discrimination between ISS and NISS, but they had different calibrations when predicting different outcomes.

6.
ACG Case Rep J ; 11(9): e01468, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221233

RESUMEN

Epstein-Barr Virus-positive mucocutaneous ulcer (EBVMCU) is a rare and new category of mature B-cell neoplasms commonly linked to immunosuppression. It often has a benign course and regresses spontaneously after discontinuation or dose reduction of immunosuppressive agents. We report the case of a 48-year-old woman on long-term azathioprine therapy for rectosigmoid Crohn's disease. In contrast to the prevalent sites typically associated with EBVMCU, such as the oral mucosa and skin, this patient was found to have locations in the gastrointestinal tract and upper neck. These areas tested positive for histopathology consistent with EBVMCU and were excised due to bowel perforation and concern for malignancy.

7.
J Integr Plant Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225562

RESUMEN

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.

8.
Front Plant Sci ; 15: 1453823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258294

RESUMEN

The real-time monitoring of corn yield by a combine harvester is a critical data source for constructing the yield histogram, which significantly benefits precision management and decision-making in modern precision agriculture. While widely used, the current photoelectric sensor-based yield monitoring method has limitations. It detects the corn height on each scraper and calculates the yield through a geometric formula. However, it neglects the noticeable difference in the corn stacking patterns affected by factors such as feeding volume, terrain, and driving speed. This oversight often results in low accuracy and poor stability in the prediction of corn yield, highlighting the need for a more advanced approach. To resolve this, we employ EDEM discrete element simulation to demonstrate the large difference of corn stacking patterns on the scraper of the elevator corresponding to feeding volume. Then, we develop a real-time monitoring system on our self-developed double elevator testing rig for carrying out a composite dataset for training three machine learning algorithm-based models, namely Deep Neural Networks (DNN), Gradient Boosting Machine (GBM), and Random Forest (RF). Importantly, these models have undergone rigorous validation under various feeding volumes, ensuring their robustness and reliability. The auxiliary elevator speed is meticulously set at 150r/min, 225r/min, and 450r/min, providing a comprehensive performance assessment. The results denote that the DNN model performs best and is stable, with a coefficient of determination (R2) of 0.998, root mean square error (RMSE) of 0.526, and mean absolute error (MAE) of 0.425. The paper also performs field experiments to test the proposed three prediction models and the system. The results also denote the DNN-based prediction model's best performance for the lowest relative error of 2.29% and the highest average accuracy of 97.85%. Consequently, the proposed real-time corn yield monitoring system achieves high accuracy and reliability for the combine harvester applications.

9.
EPMA J ; 15(3): 491-500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239106

RESUMEN

Objective: Hypertension (HTN) is a prevalent global health concern. From the standpoint of preventive and personalized medicine (PPPM/3PM), early detection of HTN offers a crucial opportunity for targeted prevention and personalized treatment. This study aimed to evaluate the association between the weight-adjusted waist index (WWI) and HTN risk. Methods: A case-control study using data from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 was conducted. Logistic regression models assessed the association between WWI and HTN. Subgroup analyses explored differences in age, sex, ethnicity, and diabetes status. Restricted cubic spline (RCS) analyses examined potential nonlinear relationships. Results: A total of 32,116 participants, with an average age of 49.28 ± 17.56 years, were included in the study. A significant positive association between WWI and the risk of HTN was identified (odds ratio [OR], 2.49; 95% CI, 2.39-2.59; P < 0.001). When WWI was categorized into quartiles (Q1-Q4), the highest quartile (Q4) exhibited a stronger association compared to Q1 (OR, 2.94; 95% CI, 2.65-3.27; P < 0.001). Subgroup analyses indicated that WWI was a risk factor for HTN across different populations, although variations in the magnitude of effect were observed. Furthermore, the findings from the RCS elucidated a nonlinear positive correlation between WWI and HTN. Conclusion: WWI is independently associated with HTN risk, highlighting its potential as a risk assessment tool in clinical practice. Incorporating WWI into early detection strategies enhances targeted prevention and personalized management of HTN. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00375-3.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39240736

RESUMEN

Recent years have witnessed the great success of the applications of graph convolutional networks (GCNs) in various scenarios. However, due to the challenging over-smoothing and over-squashing problems, the ability of GCNs to model information from long-distance nodes has been largely limited. One solution is to aggregate features from different hops of neighborhoods with a linear combination of them followed by a shallow feature transformation. However, we demonstrate that those methods can only achieve a tradeoff between tackling those two problems. To this end, in this article, we design a simple yet effective graph convolution (GC), named maximization-based GC (MGC). Instead of using the linear combination, MGC applies an elementwise maximizing operation for exploiting all possible powers of the normalized adjacent matrix to construct a GC operation. As evidenced by theoretical and empirical analysis, MGC can effectively handle the above two problems. Besides, an efficient approximated model with a linear complexity is developed to extend MGC for large-scale graph learning. To demonstrate the effectiveness, scalability, and efficiency of our models, extensive experiments have been conducted on various benchmark datasets. In particular, our models achieve competitive performance with lower complexity, even on large graphs with more than 100M nodes. Our code is available at https://github.com/SmilesDZgk/MGC.

11.
Cell Commun Signal ; 22(1): 431, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243059

RESUMEN

Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.


Asunto(s)
Glutatión , Hepatocitos , Proteína Disulfuro Isomerasas , Especies Reactivas de Oxígeno , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Animales , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Ferroptosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Masculino , Humanos
12.
Nat Commun ; 15(1): 7679, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237505

RESUMEN

Rigid solenoid coils have long been indispensable in modern intelligent devices. However, their sparse structure and challenging preparation of flexible coils for soft robots impose limitations. Here, a transformable 3D curved high-density liquid metal coil (HD-LMC) is introduced that surpasses the structural density level of enameled wire. The fabrication technique employed for high-density channels in elastomers is universally applicable. Such HD-LMCs demonstrated excellent performance in pressure, temperature, non-contact distance sensors, and near-field communication. Soft electromagnetic actuators thus achieved significantly improved the electromagnetic force and power density. Moreover, precise control of swinging tail motion enables a bionic pufferfish to swim. Finally, HD-LMC is further utilized to successfully implement a soft rotary robot with integrated sensing and actuation capabilities. This groundbreaking research provides a theoretical and experimental basis for expanding the applications of liquid metal-based multi-dimensional complex flexible electronics and is expected to be widely used in liquid metal-integrated robotic systems.

13.
Adv Mater ; : e2408918, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246126

RESUMEN

Na superionic conductor (NASICON)-structured compounds demonstrate great application potential by their robust framework and compositional diversity. However, they are blamed for the mediocre energy density, and achieving both multielectron reaction and good cycling stability simultaneously is challenging. Herein, a novel heterogeneous Na4Fe3(PO4)2(P2O7)/Na2VTi(PO4)3 (NFPP/NVTP) material with stable multielectron reaction is constructed by spray drying technology. The mutual promotion effect of intergrowth structures effectively improves the purity and the crystallization of NFPP/NVTP during the fabrication process, which is beneficial to the high capacity and cycling stability. As a result, the optimized NFPP/NVTP demonstrates a high reversible capacity of 155.3 mAh g-1 at 20 mA g-1 and outstanding cycling stability with 82.9% capacity retention over 2500 cycles at 1 A g-1, which are much superior to those of NFPP and NVTP individually. Even in full cell configuration, the energy density remains high at ≈380 Wh kg-1 based on the cathode mass. The high capacity of NFPP/NVTP is also attributed to the successive reduction/oxidation mechanism involving the introduction of Ti3+ and interfacial charge redistribution effect between the heterogeneous phases, which greatly improve the electronic and ionic conductivity. Moreover, high reversible structural evolution during the multisodium storage process further guarantees excellent cycling stability.

14.
Int J Biol Macromol ; 279(Pt 3): 135272, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226979

RESUMEN

Laccase is a green catalyst that can efficiently catalyze phenolic pollutants, and its catalytic efficiency is closely related to the interaction between enzyme and substrates. To investigate the binding effects between enzyme and phenolic pollutants, phenol, p-chlorophenol, and bisphenol A were used as substrates in this study. We focused on the removal and catalytic mechanism of these pollutants in water using yellow laccase derived from Coriolopsis gallica. The enzymatic catalytic products were characterized using Ultraviolet-Visible Absorption Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and High-Resolution Mass Spectrometry (HRMS), and the catalytic mechanism of laccase on phenolic pollutants was further explored by molecular docking. Based on the structural characterization and molecular docking results, the possible polymerization pathways of these phenolic compounds were speculated. Laccase catalyzed phenol to produce phenolic hydroxyl radicals, their para-radicals, and ortho-radicals, which polymerized to form oligomers linked by benzene­oxygen-benzene and benzene-benzene. P-chlorophenol produced phenolic hydroxyl radicals and their ortho-radicals, polymerizing to form oligomers connected by benzene­oxygen-benzene or benzene-benzene. The CC bond of the isopropyl group of bisphenol A broke to formed an intermediate product, which was further polymerized to formed a benzene­oxygen-benzene linked oligomer.

15.
Clin Exp Med ; 24(1): 210, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230837

RESUMEN

The influence of chimeric antigen receptor T (CAR-T) cell therapy on platelet function in relapsed/refractory (R/R) multiple myeloma (MM) has not been thoroughly investigated. Our cohort comprised fifty MM patients treated with CAR-T cells. The mean platelet closure time (PCT) induced by collagen/adenosine diphosphate (CADP) in peripheral blood was significantly prolonged before lymphodepletion (195.24 ± 11.740 s) and notably reduced post-CAR-T cell therapy (128.02 ± 5.60 s), with a statistically significant improvement (67.22, 95% CI 46.91-87.53, P < 0.001). This post-treatment PCT was not significantly different from that of healthy controls (10.64, 95% CI 1.11-22.40, P > 0.05). Furthermore, a pronounced enhancement in PCT was observed in patients with a response greater than partial remission (PR) following CAR-T cell infusion compared to pre-treatment values (P < 0.001). An extended PCT was also associated with a less favorable remission status. In patients with cytokine release syndrome (CRS) grades 0-2, those with a PCT over 240.5 s exhibited a shorter progression-free survival (PFS), with median PFS times of 10.2 months for the PCT > 240.5 s group versus 22.0 months for the PCT ≤ 240.5 s group. Multivariate analysis revealed that a PCT value exceeding 240.5 s is an independent prognostic factor for overall survival (OS) in R/R MM patients after CAR-T cell therapy. The study demonstrates that CAR-T cell therapy enhances platelet function in R/R MM patients, and PCT emerges as a potential prognostic biomarker for the efficacy of CAR-T cell therapy.


Asunto(s)
Plaquetas , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Resultado del Tratamiento , Receptores Quiméricos de Antígenos , Síndrome de Liberación de Citoquinas/terapia , Pruebas de Función Plaquetaria
17.
Medicine (Baltimore) ; 103(36): e39506, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252221

RESUMEN

RATIONALE: Extracorporeal membrane oxygenation (ECMO) is a critical care intervention that acts as a temporary substitute for the heart and lungs, facilitating adequate tissue perfusion and gas exchange. The 2 primary configurations, veno-arterial and veno-venous ECMO, are tailored to support either the heart and lungs or the lungs alone, respectively. PATIENT CONCERNS: The case report details patients with tumor-induced airway stenosis who encountered limitations with standard treatments, which were either insufficient or carried the risk of severe complications such as hypoxia and asphyxia. DIAGNOSES: Patients were diagnosed with severe airway stenosis caused by goiter, a condition that required innovative treatment approaches to prevent complications during the management process. INTERVENTIONS: Veno-venous ECMO was implemented as a bridging therapy to provide vital respiratory support during the tumor resection procedure. This intervention was crucial in reducing the risks associated with airway edema or tumor rupture. OUTCOMES: With the use of veno-venous ECMO, the patients successfully underwent tumor resection. They were subsequently weaned off the ECMO support, and after a course of treatment, they were discharged in good condition. LESSONS: The case demonstrates the efficacy of veno-venous ECMO as a bridging therapy for managing severe airway stenosis caused by goiter. Its use facilitated the successful resection of tumors and led to positive patient outcomes, highlighting its potential as a valuable treatment option in similar scenarios.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Bocio , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Femenino , Bocio/complicaciones , Bocio/terapia , Bocio/cirugía , Persona de Mediana Edad , Masculino , Constricción Patológica/terapia , Constricción Patológica/etiología , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/terapia , Obstrucción de las Vías Aéreas/cirugía
18.
Heliyon ; 10(16): e36143, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253259

RESUMEN

Technological advances are crucial for the optimization of gastric cancer surgery, and the success of any gastric cancer surgery is based on the correct and precise anatomical determination of the primary tumour and tissue structures. Real-time imaging-guided surgery is showing increasing potential and utility, mainly because it helps to aid intraoperative decision-making. However, intraoperative imaging faces many challenges in the field of gastric cancer. This article summarizes and discusses the following clinical applications of real-time optical imaging and fluorescence-guided surgery for gastric cancer: (1) the potential of quantitative fluorescence imaging in assessing tissue perfusion, (2) vascular navigation and determination of tumour margins, (3) the advantages and limitations of lymph node drainage assessment, and (4) identification of peritoneal metastases. In addition, preclinical study of tumour-targeted fluorescence imaging are discussed.

19.
Bioorg Chem ; 153: 107812, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260158

RESUMEN

Diabetes mellitus can induce liver injury and easily progress to liver fibrosis. However, there is still a lack of effective treatments for diabetes-induced hepatic fibrosis. Cordycepin (COR), a natural nucleoside derived from Cordyceps militaris, has demonstrated remarkable efficacy in treating metabolic diseases and providing hepatoprotective effects. However, its protective effect and underlying mechanism in diabetes-induced liver injury remain unclear. This study utilized a high-fat diet/streptozotocin-induced diabetic mouse model, as well as LX-2 and AML-12 cell models exposed to high glucose and TGF-ß1, to explore the protective effects and mechanisms of Cordycepin in liver fibrosis associated with diabetes. The results showed that COR lowered blood glucose levels, enhanced liver function, mitigated fibrosis, and suppressed HSC activation in diabetic mice. Mechanistically, COR attenuated the activation of the Wnt/ß-catenin pathway by inhibiting ß-catenin nuclear translocation, and ß-catenin knockdown further intensified this effect. Meanwhile, COR significantly inhibited SOX9 expression in vivo and in vitro. Knockdown of SOX9 downregulated Wnt3a and ß-catenin expression at the protein and gene levels to exacerbate the inhibitory action of COR on HG&TGF-ß1-induced HSCs activations. These results indicate SOX9 is involved in the mechanism by which COR deactivates the Wnt/ß-catenin pathway in hepatic fibrosis induced by diabetes. Moreover, prolonged half-life time, slower metabolism and higher exposure of COR were observed in diabetes-induced liver injury animal model via pharmacokinetics studies. Altogether, COR holds potential as a therapeutic agent for ameliorating hepatic injury and fibrosis in diabetes by suppressing the activation of the SOX9-mediated Wnt/ß-catenin pathway.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39266047

RESUMEN

Recently, there has been a burgeoning interest in flexible shear force sensors capable of precisely detecting both magnitude and direction. Despite considerable efforts, the challenge of achieving accurate direction recognition persists, primarily due to the inherent structural characteristics and sensing mechanisms. Here, we present a shear force sensor constructed by a magnetically induced assembled Ni/PDMS composite membrane, which is magnetized and integrated with a three-axis Hall sensor, facilitating its ability to simultaneously monitor both shear force magnitude (0.7-87 mN) and direction (0-360°). The cilia-inspired shear force magnetic sensor (CISFMS) exhibits admirable attributes, including exceptional flexibility, high sensitivity (0.76 mN-1), an exceedingly low detection limit (1° and 0.7 mN), and remarkable durability (over 10,000 bending cycles). Further, our results demonstrate the capacity of the CISFMS in detecting tactile properties, fluid velocity, and direction, offering substantial potential for future developments in wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA