Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39066480

RESUMEN

Multiple pathogenic single-nucleotide polymorphisms (SNPs) have been identified as contributing factors in the aggravation of cancer prognosis and emergence of drug resistance in various cancers. Here, we targeted mutated EGFR and TP53 oncogenes harboring single-nucleotide missense mutations (EGFR-T790M and TP53-R273H) that are associated with gefitinib resistance. Co-delivery of adenine base editor (ABE) and EGFR- and TP53-SNP specific single-guide RNA via adenovirus (Ad) resulted in precise correction of the oncogenic mutations with high accuracy and efficiency in vitro and in vivo. Importantly, compared with a control group treated only with gefitinib, an EGFR inhibitor, co-treatment with Ad/ABE targeting SNPs in TP53 and EGFR in combination with gefitinib increased drug sensitivity and suppressed abnormal tumor growth more efficiently. Taken together, these results indicate that ABE-mediated correction of dual oncogenic SNPs can be an effective strategy for the treatment of drug-resistant cancers.

2.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892032

RESUMEN

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Asunto(s)
Fibroblastos , Queloide , Piruvatos , Esferoides Celulares , Humanos , Queloide/metabolismo , Queloide/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Piruvatos/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Colágeno/metabolismo , Colágeno/biosíntesis , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína smad3/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Masculino
3.
Front Immunol ; 15: 1355566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835775

RESUMEN

Dendritic cell (DC)-based vaccines have emerged as a promising strategy in cancer immunotherapy due to low toxicity. However, the therapeutic efficacy of DC as a monotherapy is insufficient due to highly immunosuppressive tumor environment. To address these limitations of DC as immunotherapeutic agent, we have developed a polymeric nanocomplex incorporating (1) oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) and (2) arginine-grafted bioreducible polymer with PEGylated paclitaxel (APP) to restore antitumor immune surveillance function in tumor milieu and potentiate immunostimulatory attributes of DC vaccine. Nanohybrid complex (oAd/APP) in combination with DC (oAd/APP+DC) induced superior expression level of antitumor cytokines (IL-12, GM-CSF, and interferon gamma) than either oAd/APP or DC monotherapy in tumor tissues, thus resulting in superior intratumoral infiltration of both endogenous and exogenous DCs. Furthermore, oAd/APP+DC treatment led superior migration of DC to secondary lymphoid organs, such as draining lymph nodes and spleen, in comparison with either monotherapy. Superior migration profile of DCs in oAd/APP+DC treatment group resulted in more prolific activation of tumor-specific T cells in these lymphoid organs and greater intratumoral infiltration of T cells. Additionally, oAd/APP+DC treatment led to lower subset of tumor infiltrating lymphocytes and splenocytes being immunosuppressive regulatory T cells than any other treatment groups. Collectively, oAd/APP+DC led to superior induction of antitumor immune response and amelioration of immunosuppressive tumor microenvironment to elicit potent tumor growth inhibition than either monotherapy.


Asunto(s)
Adenoviridae , Células Dendríticas , Viroterapia Oncolítica , Virus Oncolíticos , Paclitaxel , Células Dendríticas/inmunología , Animales , Paclitaxel/farmacología , Adenoviridae/genética , Ratones , Virus Oncolíticos/inmunología , Virus Oncolíticos/genética , Viroterapia Oncolítica/métodos , Terapia Combinada , Línea Celular Tumoral , Humanos , Ratones Endogámicos C57BL , Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Femenino , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
4.
Front Immunol ; 15: 1360436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812516

RESUMEN

Bladder cancer is a common type of cancer around the world, and the majority of patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC). Although low-risk NMIBC has a good prognosis, the disease recurrence rate and development of treatment-refractory disease remain high in intermediate- to high-risk NMIBC patients. To address these challenges for the treatment of NMIBC, a novel combination therapy composed of an oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and relaxin (RLX; HY-oAd) and a clinical-stage glycogen synthase kinase (GSK)-3ß inhibitor (9-ING-41; elraglusib) was investigated in the present report. Our findings demonstrate that HY-oAd and 9-ING-41 combination therapy (HY-oAd+9-ING-41) exerted superior inhibition of tumor growth compared with respective monotherapy in a syngeneic NMIBC tumor model. HY-oAd+9-ING-41 induced high-level tumor extracellular matrix (ECM) degradation and a more potent antitumor immune response than the respective monotherapy. In detail, HY-oAd+9-ING-41 induced superior accumulation of intratumoral T cells, prevention of immune cell exhaustion, and induction of tumor-specific adaptive immune response compared to either monotherapy. Collectively, these results demonstrate that the combination of HY-oAd and 9-ING-41 may be a promising approach to elicit a potent antitumor immune response against bladder cancer.


Asunto(s)
Adenoviridae , Glucógeno Sintasa Quinasa 3 beta , Viroterapia Oncolítica , Virus Oncolíticos , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Animales , Adenoviridae/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Ratones , Humanos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Femenino
5.
J Biol Chem ; 300(4): 107206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519031

RESUMEN

Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.


Asunto(s)
Melanoma , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Quinasas DyrK , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética
6.
Cell Death Dis ; 15(1): 48, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218922

RESUMEN

Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Proteína que Contiene Valosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Paraptosis , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
7.
Cancer Lett ; 579: 216456, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37940067

RESUMEN

Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Humanos , Virus Oncolíticos/genética , Adenoviridae/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Microambiente Tumoral
8.
Adv Sci (Weinh) ; 10(33): e2305096, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845006

RESUMEN

Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Proteínas de Unión al ADN/genética , Neoplasias/genética , Mutaciones Letales Sintéticas , Medicina de Precisión , Factores de Transcripción/genética , Péptidos , Hidrolasas Diéster Fosfóricas/genética
9.
ACS Biomater Sci Eng ; 8(12): 5188-5198, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36449494

RESUMEN

Even though chemotherapy regimens for treating cancer by inducing apoptosis are extensively utilized, their therapeutic effect is hindered by multiple limitations. Thus, a combination of other types of anticancer modalities is urgently needed. Herein, a tannic acid (TA)-Fe3+-coated doxorubicin (DOX)-encapsulated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (ammonium salt) (DSPE-PEG) micelle (TFDD) for apoptosis/ferroptosis-mediated immunogenic cell death (ICD) is reported. By coating TA-Fe3+ on the surface of DOX-loaded micelles, an apoptotic agent and a ferroptotic agent are simultaneously delivered into the cancer cells and induce cell death. Furthermore, the intracellular oxidative environment generated by the apoptosis/ferroptosis hybrid pathway stimulates the endoplasmic reticulum (ER) and leads to ICD induction. The in vivo results show that the combination treatment of TFDD and anti-programmed death-ligand 1 antibodies (anti-PD-L1) considerably inhibits tumor growth and improves antitumor immunity by activating CD4+ and CD8+ T cells and decreasing the ratio of regulatory T cells (Treg) to CD4+ T cells. This study suggests that the apoptosis/ferroptosis-mediated ICD inducer may offer a potent strategy for enhanced cancer immunotherapy.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias , Linfocitos T CD8-positivos , Antígeno B7-H1 , Apoptosis , Doxorrubicina/farmacología , Micelas , Neoplasias/tratamiento farmacológico
10.
Front Immunol ; 13: 953410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091031

RESUMEN

Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Antígenos de Neoplasias , Humanos , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Microambiente Tumoral
11.
Front Cell Dev Biol ; 10: 914540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859897

RESUMEN

Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Therefore, cancer therapy is a priority research field to explore the biology of the disease and identify novel targets for the development of better treatment strategies. Mortalin is a member of the heat shock 70 kDa protein family. It is enriched in several types of cancer and contributes to carcinogenesis in various ways, including inactivation of the tumor suppressor p53, deregulation of apoptosis, induction of epithelial-mesenchymal transition, and enhancement of cancer stemness. It has been studied extensively as a therapeutic target for cancer treatment, and several types of anti-mortalin molecules have been discovered that effectively suppress the tumor cell growth. In this review, we 1) provide a comprehensive sketch of the role of mortalin in tumor biology; 2) discuss various anti-mortalin molecules, including natural compounds, synthetic small molecules, peptides, antibodies, and nucleic acids, that have shown potential for cancer treatment in laboratory studies; and 3) provide future perspectives in cancer treatment.

12.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887263

RESUMEN

Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To investigate the effects of mortalin, we performed an MTT cell viability assay, qRT-PCR, and Western blot analyses, in addition to immunofluorescence and immunoprecipitation studies using cultured fibroblasts. A rat incisional wound model was used to evaluate the effect of a mortalin-specific shRNA (dE1-RGD/GFP/shMot) Ad vector in scar tissue. In vitro, the mortalin-treated human dermal fibroblast displayed a significant increase in proliferation of type I collagen, α-smooth muscle actin, transforming growth factor-ß, phospho-Smad2/3-complex, and NF-κB levels. Immunofluorescence staining revealed markedly increased mortalin and interleukin-1α receptor protein in keloid tissue compared to those in normal tissue, suggesting that the association between mortalin and IL-1α receptor was responsible for the fibrogenic effect. In vivo, mortalin-specific shRNA-expressing Ad vectors significantly decreased the scar size and type-I-collagen, α-SMA, and phospho-Smad2/3-complex expression in rat incisional scar tissue. Thus, dE1-RGD/GEP/shMot can inhibit the TGF-ß/α-SMA axis and NF-κB signal pathways in scar formation, and blocking endogenous mortalin could be a potential therapeutic target for keloids.


Asunto(s)
Interleucina-1alfa , Queloide , Animales , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico , Humanos , Interleucina-1alfa/metabolismo , Queloide/metabolismo , FN-kappa B/metabolismo , Oligopéptidos/farmacología , ARN Interferente Pequeño/metabolismo , Ratas , Factor de Crecimiento Transformador beta/metabolismo
13.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806132

RESUMEN

Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.


Asunto(s)
Neoplasias de la Mama , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/fisiología , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Vectores Genéticos , Humanos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , ARN Interferente Pequeño/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Biomater Sci ; 10(15): 4293-4308, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35766864

RESUMEN

Oncolytic virotherapy is a highly promising and novel treatment modality for cancer. Several clinical trials with oncolytic viruses have illustrated that the potent antitumor efficacy of these viruses may rely on the efficient induction of antitumor immune response. In contrast, antiviral immune response is attributed to adverse side defects and diminishing therapeutic efficacy. In the present report, we generated a nanohybrid complex incorporating immune stimulatory oncolytic adenovirus (oAd) co-expressing decorin (DCN) and interleukin (IL)-12 with a bioreducible nanomaterial composed of PEI-Arg-mPEG-S-S-mPEG-Arg-PEI blocks (PAPS), ultimately aiming to modulate both antitumor and antiviral immune responses to be favorable toward oncolytic virotherapy. The transduction efficacy of the PAPS-incorporated nanohybrid vector (Ad/PAPS) was significantly higher than that of a complex using our previously reported polymer PPSA (Ad/PPSA) regardless of the cellular coxsackievirus and adenovirus receptor expression level of cancer cells. oAd complexed with PAPS (oAd/PAPS) also elicited a more potent cancer cell killing effect, antitumor efficacy, and metastasis inhibition than naked oAd or oAd complexed with PPSA (oAd/PPSA) through a higher level of therapeutic transgenes (DCN and IL-12), viral replication, and more efficient infiltration of T cells into tumor tissues. Notably, oAd/PAPS induced the highest level of antitumor immune response while the antiviral immune response was mediated at a significantly lower level than those of naked oAd. Adaptive immune response against the virus was also significantly attenuated in the oAd/PAPS group. oAd/PAPS treatment also led to the highest level of antitumor central memory T cells and the lowest level of immunosuppressive regulatory T cells in the spleen. Collectively, our findings illustrate that oAd/PAPS can simultaneously regulate both antitumor and antiviral immune responses to be more favorable to oncolytic virotherapy, leading to improved gene expression, viral replication, and growth inhibition of both primary and metastatic tumors.


Asunto(s)
Adenoviridae , Viroterapia Oncolítica , Inmunidad Adaptativa , Adenoviridae/genética , Adenoviridae/metabolismo , Antivirales , Línea Celular Tumoral , Interleucina-12/metabolismo , Polímeros/metabolismo
15.
Mol Ther Oncolytics ; 25: 78-97, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35434272

RESUMEN

Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as "biological factories," enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.

16.
Cancer Gene Ther ; 29(10): 1321-1331, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35444290

RESUMEN

Oncolytic adenovirus (oAd) elicits antitumor activity by preferential viral replication in cancer cells. However, poor systemic administrability or suboptimal intratumoral retainment of the virus remains a major challenge toward maximizing the antitumor activity of oAd in a clinical environment. To surmount these issues, a variety of non-immunogenic polymers has been used to modify the surface of oAds chemically or physically. Complexation of oAd with polymers can effectively evade the host immune response and reduces nonspecific liver sequestration. The tumor-specific delivery of these complexes can be further improved upon by inclusion of tumor-targeting moieties on the surface. Therefore, modification of the Ad surface using polymers is viewed as a potential strategy to enhance the delivery of Ad via systemic administration. This review aims to provide a comprehensive overview of polymer-complexed Ads, their progress, and future challenges in cancer treatment.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Línea Celular Tumoral , Humanos , Polímeros/química
17.
Pharmaceutics ; 14(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335972

RESUMEN

Adenoviruses (Ads) are attractive nonviral vectors and show great potential in cancer gene therapy. However, inherent properties of Ads, including immunogenicity, nonspecific toxicity, and coxsackie and adenovirus receptor (CAR)-dependent cell uptake, limit their clinical use. To surmount these issues, we developed a pH- and glutathione-responsive poly(ethylene glycol)-poly(ꞵ-aminoester)-polyethyleneimine (PPA) for conjugation with Ad. The pH sensitivity of the PPA copolymer was elegantly tuned by substitution with different amino acids (arginine, histidine, and tryptophan), piperazines (Pip1, Pip2, and Pip3), and guanidine residues in the backbone of the PPA conjugate. PPA copolymer was further functionalized with short-chain cross-linker succinimidyl 3-(2-pyridyldithio)propionate) (SPDP) to obtain PPA-SPDP for facile conjugation with Ad. The PPA-conjugated Ad (PPA-Ad) conjugate was obtained by reacting PPA-SPDP conjugate with thiolated Ad (Ad-SH). Ad-SH was prepared by reacting Ad with 2-iminothiolane. The size distribution and zeta potential results of PPA-Ad conjugate showed an increasing trend with an increase in copolymer dose. From in vitro test, it was found that the transduction efficiency of PPA-Ad conjugate in CAR-positive cells (A549 and H460 cells) was remarkably increased at the acidic pH condition (pH 6.2) when compared with PPA-Ad conjugate incubated under the physiological condition (pH 7.4). Interestingly, the increase in transduction efficiency was evidenced in CAR-negative cells (MDA-MB-231 and T24 cells). These results demonstrated that biocompatible and biodegradable PPA copolymers can efficiently cover the surface of Ad and can increase the transduction efficiency, and hence PPA copolymers can be a useful nanomaterial for viral vector delivery in cancer therapy.

18.
Front Immunol ; 13: 826876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273607

RESUMEN

Immunotherapy holds enormous promise to create a new outlook of cancer therapy by eliminating tumors via activation of the immune system. In immunotherapy, polymeric systems play a significant role in improving antitumor efficacy and safety profile. Polymeric systems possess many favorable properties, including magnificent biocompatibility and biodegradability, structural and component diversity, easy and controllable fabrication, and high loading capacity for immune-related substances. These properties allow polymeric systems to perform multiple functions in immunotherapy, such as immune stimulants, modifying and activating T cells, delivery system for immune cargos, or as an artificial antigen-presenting cell. Among diverse immunotherapies, immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell, and oncolytic virus recently have been dramatically investigated for their remarkable success in clinical trials. In this report, we review the monotherapy status of immune checkpoint inhibitors, CAR-T cell, and oncolytic virus, and their current combination strategies with diverse polymeric systems.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Receptores Quiméricos de Antígenos , Humanos , Inhibidores de Puntos de Control Inmunológico , Factores Inmunológicos , Inmunoterapia , Receptores Quiméricos de Antígenos/genética
19.
Cancer Gene Ther ; 29(6): 825-834, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34349241

RESUMEN

BACKGROUND: While immune checkpoint inhibitors are becoming a standard of care for multiple types of cancer, the majority of patients do not respond to this form of immunotherapy. New approaches are required to overcome resistance to immunotherapies. METHODS: We investigated the effects of adenoviral p53 (Ad-p53) gene therapy in combination with immune checkpoint inhibitors and selective IL2 or IL15 CD122/132 agonists in the aggressive B16F10 tumor model resistant to immunotherapies. To assess potential mechanisms of action, pre- and post- Ad-p53 treatment biopsies were evaluated for changes in gene-expression profiles by Nanostring IO 360 assays. RESULTS: The substantial synergy of "triplet" Ad-p53 + CD122/132 + anti-PD-1 therapy resulted in potential curative effects associated with the complete tumor remissions of both the primary and contralateral tumors. Interestingly, contralateral tumors, which were not injected with Ad-p53 showed robust abscopal effects resulting in statistically significant decreases in tumor size and increased survival (p < 0.001). None of the monotherapies or doublet treatments induced the complete tumor regressions. Ad-p53 treatment increased interferon, CD8+ T cell, immuno-proteosome antigen presentation, and tumor inflammation gene signatures. Ad-p53 treatment also decreased immune-suppressive TGF-beta, beta-catenin, macrophage, and endothelium gene signatures, which may contribute to enhanced immune checkpoint inhibitor (CPI) efficacy. Unexpectedly, a number of previously unidentified, strongly p53 downregulated genes associated with stromal pathways and IL10 expression identified novel anticancer therapeutic applications. CONCLUSIONS: These results imply the ability of Ad-p53 to induce efficacious local and systemic antitumor immune responses with the potential to reverse resistance to immune checkpoint inhibitor therapy when combined with CD122/132 agonists and immune checkpoint blockade. Our findings further imply that Ad-p53 has multiple complementary immune mechanisms of action, which support future clinical evaluation of triplet Ad-p53, CD122/132 agonist, and immune checkpoint inhibitor combination treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Terapia Genética , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética
20.
Cells ; 10(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34831034

RESUMEN

Oncolytic adenoviruses (oAds) have been evaluated in numerous clinical trials due to their promising attributes as cancer therapeutics. However, the therapeutic efficacy of oAds was limited due to variable coxsackie and adenovirus receptor (CAR) expression levels and the dense extracellular matrix (ECM) of heterogenic clinical tumors. To overcome these limitations, our present report investigated the therapeutic efficacy of combining GM101, an oAd with excellent tumor ECM degrading properties, and histone deacetylase inhibitor (HDACi). Four different HDACi (suberohydroxamic acid (SBHA), MS-275, trichostatin A (TSA), and valproic acid) candidates in combination with replication-incompetent and GFP-expressing Ad (dAd/GFP) revealed that SBHA and MS-275 exerted more potent enhancement in Ad transduction efficacy than TSA or valproic acid. Further characterization revealed that SBHA and MS-275 effectively upregulated CAR expression in cancer cells, improved the binding of Ad with cancer cell membranes, and led to dynamin 2- and clathrin-mediated endocytosis of Ad. The combination of GM101 with HDACi induced superior cancer cell killing effects compared to any of the monotherapies, without any additional cytotoxicity in normal cell lines. Further, GM101+SBHA and GM101+MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Potent antitumor efficacy was achieved via the combination of GM101 with HDACi, inducing necrotic and apoptotic cancer cell death, inhibiting cancer cell proliferation, degrading ECM in tumor tissue, and thus exerting the highest level of virus dispersion and accumulation. Collectively, these data demonstrate that the combination of GM101 and HDACi can enhance intratumoral dispersion and accumulation of oAd through multifaced mechanisms, making it a promising strategy to address the challenges toward successful clinical development of oAd.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Microambiente Tumoral , Adenoviridae/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Clatrina/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Dinamina II/metabolismo , Endocitosis/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones Desnudos , Neoplasias/patología , Transgenes , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA