Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5774, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182934

RESUMEN

Compact lasers capable of producing kilowatt class peak power are highly desirable for applications in various fields, including laser remote sensing, laser micromachining, and biomedical photonics. In this paper, we propose a high-peak-power chip-scale semiconductor/solid-state vertically integrated laser in which two cavities are optically coupled at the solid-state laser gain medium. The first cavity is for the intra-pumping of ytterbium-doped yttrium aluminum garnet (Yb:YAG) with an electrically driven indium gallium arsenide (InGaAs) quantum well, and the second cavity consists of Yb:YAG and chromium-doped yttrium aluminum garnet (Cr:YAG) for passive Q-switching. The proposed laser produces pulses as short as 450 ps, and an estimated peak power of 57.0 kW with a laser chip dimension of 1 mm3. To the best of our knowledge, this is the first monolithic integration of semiconductor and solid-state laser gain mediums to realize a compact high-peak-power laser.

2.
Opt Express ; 16(9): 6033-40, 2008 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-18545304

RESUMEN

We present a coupled-wave model for a triangular-lattice two-dimensional (2D) photonic crystal (PC) with a transverse electric (TE) polarization and derive a set of coupled-wave equations. We use these equations to obtain analytic expressions that describe the relations between the resonant mode frequencies and the coupling constants. We calculate the resonant mode frequencies for a PC composed of circular holes. These agree well with the frequencies calculated using the 2D plane wave expansion method. We also evaluate the coupling constants of fabricated samples using their measured resonant mode frequencies. Our analytic expressions allow the design and evaluation of feedback strength in triangular-lattice 2D PC cavities.


Asunto(s)
Electricidad , Modelos Químicos , Fotones , Cristalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA