Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982890

RESUMEN

Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3-5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.e., strong sensitivity of their fluorescence to the viscosity of the local environment. We also demonstrate that our new pigments belong to a very rare type of organic fluorophores which do not obey the well-known empirical Kasha'rule stating that photoluminescence transition always occurs from the lowest excited state of an emitting molecule. This rare spectral feature of our pigments is accompanied by an even rarer capability of spectrally and temporally well-resolved anti-Kasha dual emission (DE) from both higher and lowest electronic states in non-polar solvents. We show that among three new pigments, PerTCNE has significant potential as the medium-bandgap non-fullerene electron acceptor. Such materials are now highly demanded for indoor low-power electronics and portable devices for the Internet-of-Things. Additionally, we demonstrate that PyrTCNE has been successfully used as a structural unit in template assembling of the new cyanoarylporphyrazine framework with 4 D-π-A dyads framing this macrocycle (Pyr4CN4Pz). Similarly to its structural unit, Pyr4CN4Pz is also the anti-Kasha fluorophore, exhibiting intensive DE in viscous non-polar medium and polymer films, which strongly depends on the polarity of the local environment. Moreover, our studies showed high photodynamic activity of this new tetrapyrrole macrocycle which is combined with its unique sensory capacities (strong sensitivity of its fluorescent properties to the local environmental stimuli such as viscosity and polarity. Thus, Pyr4CN4Pz can be considered the first unique photosensitizer that potentially enables the real-time combination of photodynamic therapy and double-sensory approaches which is very important for modern biomedicine.


Asunto(s)
Colorantes Fluorescentes , Colorantes Fluorescentes/química , Solventes/química , Fluorescencia
2.
J Fluoresc ; 28(2): 513-522, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29374365

RESUMEN

Tetra(aryl)tetracyanoporphyrazines are the promising group of dyes for photodynamic therapy of tumors with unique combination of photosensitizer properties and sensitivity of fluorescence parameters to the environment viscosity. However, in vivo application of such hydrophobic photosensitizers requires using of drug carriers ensuring efficient delivery to the tumor site. The present study is focused on obtaining liposomes loaded with tetrakis(4-benzyloxyphenyl)tetracyanoporphyrazine and examining their properties depending on lipid composition. An efficient loading of the dye and a high long-term stability were proved for the liposomes composed of phosphatidylcholine with cholesterol and phosphatidylglycerol. This can be explained by the presence of negatively charged lipids in the bilayer and, as a consequence, a high value of the surface potential. A high rate of cellular uptake and a strong photoinduced toxicity give the prerequisites for the further use of the liposomal form of the photosensitizer for photodynamic therapy of tumors.


Asunto(s)
Nitrilos/administración & dosificación , Nitrilos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacología , Transporte Biológico , Línea Celular Tumoral , Oscuridad , Humanos , Liposomas , Nitrilos/química , Nitrilos/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Agua/química
3.
Oncotarget ; 8(13): 22048-22058, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423549

RESUMEN

Immunotoxin 4D5scFv-PE40 is a recombinant protein that comprises 4D5scFv antibody as a targeting module and fragment of Pseudomonas exotoxin A as an effector (toxic) one. The immunotoxin has shown pronounced antitumor effect on cancer cells overexpressing HER2 receptor in vitro and on HER2-positive experimental tumors in vivo. We clarified the mechanism of 4D5scFv-PE40 activity that is of particular importance in the case of targeted therapeutic agent aimed at personalizing treatment of disease in relation to molecular genetic characteristics of each patient. After specific binding to HER2 on the cell surface and clathrin-mediated endocytosis the immunotoxin passes through retrograde trafficking route. During this route the immunotoxin molecule is supposed to undergo enzymatic processing that ends in separation of C-terminal and N-terminal fragments of the immunotoxin. Finally, C-terminal functionally active fragment of 4D5scFv-PE40 arrests protein synthesis in cytoplasm followed by cell death via apoptosis.


Asunto(s)
ADP Ribosa Transferasas/inmunología , Apoptosis/efectos de los fármacos , Toxinas Bacterianas/inmunología , Exotoxinas/inmunología , Inmunotoxinas/farmacología , Neoplasias Ováricas/patología , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/farmacología , Factores de Virulencia/inmunología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Células Tumorales Cultivadas , Exotoxina A de Pseudomonas aeruginosa
4.
J Fluoresc ; 23(1): 193-202, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23054301

RESUMEN

The present study was undertaken to evaluate the membrane-associating properties of a series of novel antitumor agents, Eu(III) coordination complexes (EC), using the pyrene fluorescence quenching as an analytical instrument. Analysis of EC-induced decrease in pyrene fluorescence intensity in terms of partition and solubility-diffusion models allowed us to evaluate the partition and permeation coefficients of the examined compounds into the lipid vesicles prepared from zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic lipid cardiolipin (CL). The drug-lipid interactions were found to have the complex nature determined by both EC structure and lipid bilayer composition. High values of the obtained partition and permeation coefficients create the background for the development of EC liposomal formulations.


Asunto(s)
Antineoplásicos/química , Europio/química , Membrana Dobles de Lípidos/química , Compuestos Organometálicos/química , Pirenos/química , Animales , Membrana Celular/química , Interacciones Hidrofóbicas e Hidrofílicas , Permeabilidad , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA