Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14096, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890364

RESUMEN

In hydrothermal high-temperature abnormal mines, the composite heat-insulation zone structure, formed through a combination of guniting and grouting, serves to mitigate heat dissipation from the surrounding rock into the airflow. To comprehensively understand the thermal insulation performance of the composite heat-insulation zone structure, this study employs numerical simulation to analyze the following aspects: the variation in the temperature field within the surrounding rock of the roadway without insulation, the influence of structural parameters of the composite heat-insulation zone on temperature distribution in the surrounding rock of the roadway, and the thermal insulation effectiveness of the composite heat-insulation zone with varying structures. The findings indicate that the temperature distribution within the surrounding rock of the roadway lacking a heat-insulation zone is relatively uniform. However, as ventilation time extends, the heat regulation zone within the surrounding rock gradually extends deeper, ultimately forming an elliptical cooling area. The composite heat-insulation zone structure effectively mitigates heat transfer from deeper surrounding rock to the roadway wall, consequently altering the scope of the roadway's heat regulation zone. Enhancing the thermal insulation performance of the composite heat-insulation zone structure can be achieved by increasing the thickness of the thermal insulation layer, adjusting grouting rate and depth, and reducing the thermal conductivity of insulation materials. The thermal insulation effectiveness of the thermal insulation layer surpasses that of the grouting layer, with its performance primarily influenced by the thermal conductivity of the materials used. Simulation results demonstrate that the composite heat-insulation zone structure reduces the maximum heat flux on the roadway wall from 47.4 to 37.7 W/m2, resulting in a 20% reduction in heat transfer from deeper surrounding rock. These findings offer valuable insights for implementing thermal insulation techniques in hydrothermal high-temperature anomaly mines.

2.
J Phys Chem C Nanomater Interfaces ; 128(9): 3975-3984, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38476825

RESUMEN

Defects in the crystal structures of metal-organic frameworks (MOFs), whether present intrinsically or introduced via so-called defect engineering, can play strong roles in the properties of MOFs for various applications. Unfortunately, direct experimental detection and characterization of defects in MOFs are very challenging. We show that in many cases, the differences between experimentally observed and computationally predicted water stabilities of MOFs can be used to deduce information on the presence of point defects in real materials. Most computational studies of MOFs consider these materials to be defect-free, and in many cases, the resulting structures are predicted to be hydrophobic. Systematic experimental studies, however, have shown that many MOFs are hydrophilic. We show that the existence of chemically plausible point defects can often account for this discrepancy and use this observation in combination with detailed molecular simulations to assess the impact of local defects and flexibility in a variety of MOFs for which defects had not been considered previously.

3.
Chem Mater ; 35(23): 10156-10168, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107189

RESUMEN

Molecular diffusion in MOFs plays an important role in determining whether equilibrium can be reached in adsorption-based chemical separations and is a key driving force in membrane-based separations. Molecular dynamics (MD) simulations have shown that in some cases inclusion of framework flexibility in MOF changes predicted molecular diffusivities by orders of magnitude relative to more efficient MD simulations using rigid structures. Despite this, all previous efforts to predict molecular diffusion in MOFs in a high-throughput way have relied on MD data from rigid structures. We use a diverse data set of MD simulations in flexible and rigid MOFs to develop a classification model that reliably predicts whether framework flexibility has a strong impact on molecular diffusion in a given MOF/molecule pair. We then combine this approach with previous high-throughput MD simulations to develop a reliable model that efficiently predicts molecular diffusivities in cases in which framework flexibility can be neglected. The use of this approach is illustrated by making predictions of molecular diffusivities in ∼70,000 MOF/molecule pairs for molecules relevant to gas separations.

4.
J Phys Chem C Nanomater Interfaces ; 127(42): 20881-20889, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908744

RESUMEN

To move toward more energy-efficient adsorption-based processes, there is a need for accurate multicomponent data under realistic conditions. While the Ideal Adsorbed Solution Theory (IAST) has been established as the preferred prediction method due to its simplicity, limitations and inaccuracies for less ideal adsorption systems have been reported. Here, we use amine-functionalized derivatives of the UiO-66 structure to change the extent of homogeneity of the internal surface toward the adsorption of the two probe molecules carbon dioxide and ethylene. Although it might seem plausible that more functional groups lead to more heterogeneity and, thus, less accurate predictions by IAST, we find a mixed-linker system with increased heterogeneity in terms of added adsorption sites where IAST predictions and experimental loadings agree exceptionally well. We show that incorporating uncertainty analysis into predictions with IAST is important for assessing the accuracy of these predictions. Energetic investigations combined with Grand Canonical Monte Carlo simulations reveal almost homogeneous carbon dioxide but heterogeneous ethylene adsorption in the mixed-linker material, resulting in local, almost pure phases of the individual components.

5.
J Phys Chem Lett ; 14(29): 6658-6665, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37462949

RESUMEN

High-throughput molecular simulations of metal-organic frameworks (MOFs) are a useful complement to experiments to identify candidates for chemical separation and storage. All previous efforts of this kind have used simulations in which MOFs are approximated as defect-free. We introduce a tool to readily generate missing-linker defects in MOFs and demonstrate this tool with a collection of 507 defective MOFs. We introduce the concept of the maximum possible defect concentration; at higher defect concentrations, deviations from the defect-free crystal structure would be readily evident experimentally. We studied the impact of defects on molecular adsorption as a function of defect concentrations. Defects have a slightly negative or negligible influence on adsorption at low pressures for ethene, ethane, and CO2 but a strong positive influence for methanol due to hydrogen bonding with defects. Defective structures tend to have loadings slightly higher than those of defect-free structures for all adsorbates at elevated pressures.

6.
Chem Commun (Camb) ; 58(88): 12305-12308, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36250295

RESUMEN

The separation of xylene isomers still remains an industrially challenging task. Here, porous purine-based metal-organic frameworks (MOFs) have been synthesized and studied for their potential in xylene separations. In particular, Zn(purine)I showed excellent para-xylene/ortho-xylene separation capability with a diffusion selectivity of 6 and high equilibrium adsorption selectivity as indicated by coadsorption experiments. This high selectivity is attributed to the shape and size of the channel aperture within the rigid framework of Zn(purine)I.


Asunto(s)
Estructuras Metalorgánicas , Xilenos , Adsorción , Isomerismo , Purinas
7.
ACS Appl Mater Interfaces ; 14(37): 42258-42266, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36075067

RESUMEN

A collection of more than 20,000 experimentally derived crystal structures for metal-organic frameworks (MOFs) that do not have two- or three-dimensional covalently bonded networks has been developed from the materials available at the Cambridge Crystallographic Data Centre. Of these 20,000 1D MOFs, more than 12,000 structures have been verified to be solvent-free and in exact agreement with the stoichiometry of the synthesized materials. More than 10% of the complete data set comprise materials including two or more distinct metals. The band gaps of more than 12,000 1D MOFs have been computed at the density functional theory-generalized gradient approximation level, finding more than 2000 materials that have a zero band gap. Molecular simulations of CH4 adsorption in a small number of 1D MOFs indicated that adsorbate-induced deformation plays a significant role in determining adsorption isotherms in these materials. As a result, methods that have been used previously for high-throughput predictions of molecular adsorption in 3D MOFs are not suitable for 1D MOFs.

8.
J Phys Chem Lett ; 13(22): 4891-4896, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621704

RESUMEN

In this work, the degradation of the metal-organic framework (MOF) DMOF-1 as a function of water adsorption was investigated. As the quantity of water vapor adsorbed by DMOF-1 increases, degradation of the MOF from hydrolysis accelerates. Degradation was attributed to clustering of water molecules in the void space of DMOF-1, as seen in NVT Monte Carlo simulations. Our molecular simulations strongly suggest that degradation of DMOF-1 by water is driven by water adsorption at defect sites in the MOF. Interestingly, it was observed that DMOF-1 can remain stable if it adsorbs less water than the 1 mmol/g necessary to initiate degradation within the framework. Even though the rate of hydrolysis increases at higher temperatures, the degradation threshold for DMOF-1 remains 1 mmol/g regardless of temperature. This suggests that at sufficiently elevated temperatures (above ∼50 °C) DMOF-1 is stable toward water vapor at all relative humidities.

9.
J Am Chem Soc ; 144(9): 4071-4079, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35170940

RESUMEN

Type II porous liquids, comprising intrinsically porous molecules dissolved in a liquid solvent, potentially combine the adsorption properties of porous adsorbents with the handling advantages of liquids. Previously, discovery of appropriate solvents to make porous liquids had been limited to direct experimental tests. We demonstrate an efficient screening approach for this task that uses COSMO-RS calculations, predictions of solvent pKa values from a machine-learning model, and several other features and apply this approach to select solvents from a library of more than 11,000 compounds. This method is shown to give qualitative agreement with experimental observations for two molecular cages, CC13 and TG-TFB-CHEDA, identifying solvents with higher solubility for these molecules than had previously been known. Ultimately, the algorithm streamlines the downselection of suitable solvents for porous organic cages to enable more rapid discovery of Type II porous liquids.


Asunto(s)
Solventes , Porosidad , Solubilidad
10.
ACS Appl Mater Interfaces ; 13(51): 61305-61315, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34927436

RESUMEN

High-throughput calculations based on molecular simulations to predict the adsorption of molecules inside metal-organic frameworks (MOFs) have become a useful complement to experimental efforts to identify promising adsorbents for chemical separations and storage. For computational convenience, all existing efforts of this kind have relied on simulations in which the MOF is approximated as rigid. In this paper, we use extensive adsorption-relaxation simulations that fully include MOF flexibility effects to explore the validity of the rigid framework approximation. We also examine the accuracy of several approximate methods to incorporate framework flexibility that are more computationally efficient than adsorption-relaxation calculations. We first benchmark various models of MOF flexibility for four MOFs with well-established CO2 experimental consensus isotherms. We then consider a range of adsorption properties, including Henry's constants, nondilute loadings, and adsorption selectivity, for seven adsorbates in 15 MOFs randomly selected from the CoRE MOF database. Our results indicate that in many MOFs adsorption-relaxation simulations are necessary to make quantitative predictions of adsorption, particularly for adsorption at dilute concentrations, although more standard calculations based on rigid structures can provide useful information. Finally, we investigate whether a correlation exists between the elastic properties of empty MOFs and the importance of including framework flexibility in making accurate predictions of molecular adsorption. Our results did not identify a simple correlation of this type.

11.
ACS Appl Mater Interfaces ; 13(9): 11039-11049, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33646743

RESUMEN

The separation of xenon/krypton (Xe/Kr) mixtures is a challenging process. Many porous materials allow the adsorption of both Xe and Kr but only with low selectivity. Anion-pillared metal-organic frameworks (MOFs), featuring the anion groups as structural pillars, show potential in gas separations, but only a limited number of them have been synthesized. Here, we describe a collection of 936 anion-pillared MOFs based on 22 experimentally available structures. We performed density functional theory (DFT) optimization and then assigned density-derived electrostatic and chemical (DDEC) charges for each MOF to make them well suited to molecular simulations. The structural properties of the MOFs vary more strongly with the choice of the organic ligand than with other aspects like fluorine groups and metal centers. We then screened the entire collection of MOFs in the context of Xe/Kr separation at room temperature. Compared with previously reported MOFs, the interpenetrated MOF SIFSIX-6-Cd-i is predicted to perform better for Xe/Kr separations, with a good balance between working capacity (1.62 mmol/g) and separation selectivity (16.4) at 298 K and 100 kPa. We also found that the heterogeneity of fluorine groups within a MOF can help to enhance Xe working capacity without reducing the Xe/Kr selectivity, suggesting that synthesis of anion-pillared MOFs with mixed fluorine groups may lead to improved Xe/Kr separation performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA