Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1349374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384272

RESUMEN

The diagnosis of tuberculosis depends on detecting Mycobacterium tuberculosis (Mtb). Unfortunately, recognizing patients with extrapulmonary tuberculosis (EPTB) remains challenging due to the insidious clinical presentation and poor performance of diagnostic tests. To identify biomarkers for EPTB, the GSE83456 dataset was screened for differentially expressed genes (DEGs), followed by a gene enrichment analysis. One hundred and ten DEGs were obtained, mainly enriched in inflammation and immune -related pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify 10 co-expression modules. The turquoise module, correlating the most highly with EPTB, contained 96 DEGs. Further screening with the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) narrowed down the 96 DEGs to five central genes. All five key genes were validated in the GSE144127 dataset. CARD17 and GBP5 had high diagnostic capacity, with AUC values were 0.763 (95% CI: 0.717-0.805) and 0.833 (95% CI: 0.793-0.869) respectively. Using single sample gene enrichment analysis (ssGSEA), we evaluated the infiltration of 28 immune cells in EPTB and explored their relationships with key genes. The results showed 17 immune cell subtypes with significant infiltrations in EPTB. CARD17, GBP5, HOOK1, LOC730167, and HIST1H4C were significantly associated with 16, 14, 12, 6, and 4 immune cell subtypes, respectively. The RT-qPCR results confirmed that the expression levels of GBP5 and CARD17 were higher in EPTB compared to control. In conclusion, CARD17 and GBP5 have high diagnostic efficiency for EPTB and are closely related to immune cell infiltration.

2.
Infect Drug Resist ; 16: 3101-3108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228659

RESUMEN

Background: Actinomadura geliboluensis was first isolated in 2012 in Gelibolu, Canakkale, Turkey, and has not been reported to be isolated from humans until now. We have isolated it from the bronchoalveolar lavage fluid (BLF) of a patient with pneumonia and found its drug resistance. It is the first time that Actinomadura geliboluensis has been isolated from humans since its discovery and naming. This case may provide new ideas and methods for the clinical diagnosis and treatment of pulmonary actinomycosis. Case Description: The patient was a 75-year-old male who was hospitalized in a township hospital and failed to improve after penicillin treatment. After admission to our hospital, the patient was treated with piperacillin/tazobactam according to clinical guidelines for 14 days. Actinomadura geliboluensis was isolated from the patient's BLF and was identified by 16S rRNA sequencing. This report shows the biological characteristics and in vitro drug susceptibility testing, as well as the genomics analysis based on next-generation sequencing (NGS). The results demonstrated that Actinomadura geliboluensis was easy to be mistakenly identified as Actinomyces dental caries by using the Merieux ANC identification card. Based on the MIC test, Actinomadura geliboluensis was susceptible to tetracyclines, quinolones and sulfonamides, but resistant to carbapenems, penicillins and cephalosporins. The K-B test results showed Actinomadura geliboluensis was highly sensitive to piperacillin/tazobactam. Genomic analysis based on NGS showed that the Actinomadura geliboluensis belongs to Planobispora rosea EF-Tu mutants conferring resistance to inhibitor GE2270A, AAC(3)-VIIa, vanRO, chrB, and mexY. Conclusion: Actinomycetes is generally sensitive to Penicillin but Actinomadura geliboluensis is not. In vitro drug susceptibility test is needed to support individualized drug use to avoid delay in the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA