Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201588

RESUMEN

The R2R3-MYB gene family represents a widely distributed class of plant transcription factors. This gene family plays an important role in many aspects of plant growth and development. However, the characterization of R2R3-MYB genes present in the genome of Coptis teeta has not been reported. Here, we describe the bioinformatic identification and characterization of 88 R2R3-MYB genes in this species, and the identification of members of the R2R3-MYB gene family in species within the order Ranales most closely related to Coptis teeta. The CteR2R3-MYB genes were shown to exhibit a higher degree of conservation compared to those of A. thaliana, as evidenced by phylogeny, conserved motifs, gene structure, and replication event analyses. Cis-acting element analysis confirmed the involvement of CteR2R3-MYB genes in a variety of developmental processes, including growth, cell differentiation, and reproduction mediated by hormone synthesis. In addition, through homology comparisons with the equivalent gene family in A. thaliana, protein regulatory network prediction and transcriptome data analysis of floral organs across three time periods of flower development, 17 candidate genes were shown to exhibit biased expression in two floral phenotypes of C. teeta. This suggests their potential involvement in floral development (anther development) in this species.


Asunto(s)
Evolución Molecular , Flores , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Factores de Transcripción , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo
2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2422-2433, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812151

RESUMEN

The heat shock protein 70 family contains the stress proteins ubiquitous in plants. These proteins are involved in the responses to different abiotic stress conditions and have highly conserved gene sequences. However, little is known about the molecular mechanisms of Fritillaria cirrhosa in response to high-temperature stress. Here, 26 HSP70s, FcHSP70-1 to FcHSP70-26, were identified from the transcriptome data of root, bulb, stem, leaf, and fruit samples of F. cirrhosa. The proteins encoded by FcHSP70s had the lengths ranging from 560 aa to 944 aa, with the molecular weight of 61.64-100.01 kDa and the theoretical isoelectric point between 5.00 and 6.59. The secondary structural elements of HSP70s were mainly random coils and α-helixes. Subcellular localization prediction revealed that FcHSP70s were distributed in mitochondria, chloroplasts, nuclei, endoplasmic reticulum, and cytoplasm. The phylogenetic tree showed that 7 members of the HSP70 family belonged to the Dnak subfamily and 19 members belonged to the HSP110/SSE subfamily. In addition, the qRT-PCR results showed that the expression of FcHSP70-5, FcHSP70-8, FcHSP70-17, FcHSP70-18, and FcHSP70-23 in F. cirrhosa was significantly up-regulated at 35 ℃, which indicated that these genes might play a role in the response to high temperature stress. In addition, compared with other tissues, stems and leaves were sensitive to high temperature stress, with the expression of 18 genes up-regulated by 18.18 and 8.03 folds on average, respectively. These findings provide valuable information about the molecular mechanism of HSP70s of F. cirrhosa in response to high temperature stress.


Asunto(s)
Fritillaria , Regulación de la Expresión Génica de las Plantas , Proteínas HSP70 de Choque Térmico , Filogenia , Proteínas de Plantas , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Fritillaria/genética , Fritillaria/química , Calor , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Familia de Multigenes
3.
Front Genet ; 15: 1349673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317660

RESUMEN

Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.

4.
FEMS Immunol Med Microbiol ; 60(3): 275-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20955466

RESUMEN

Multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is one of the leading Gram-negative organisms associated with nosocomial infections. The increasing frequency of MDR-PA has represented a huge challenge in conventional antibacterial therapy. The loss of effectiveness of commonly used antibiotics calls for the immediate need to develop an alternative strategy for combating MDR-PA infections. The multiantibiotic resistance of MDR-PA is largely attributable to the production of multidrug efflux pumps, MexAB-OprM. OprM forms the antibiotic-ejecting duct and plays a crucial role in exporting incoming chemotherapeutic agents across the membranes. Disruption of the OprM expression may inhibit the function of multidrug efflux pumps and lead to restoration of MDR-PA susceptibility to antibiotics. In this study, we developed a novel anion liposome for encapsulating and delivering specific anti-oprM phosphorothioate oligodeoxynucleotide (PS-ODN617) and polycation polyethylenimine (PEI) complexes. The additions of the encapsulated anti-oprM PS-ODN617/PEI to MDR-PA isolates caused a significant reduction of oprM expression and inhibition of MDR-PA growth in the presence of piperacillin in a concentration-dependent manner. The encapsulated PS-ODN617 treatment also reduced minimal inhibitory concentrations of five most commonly used antibiotics to the sensitive margin values on MDR-PA clinical isolates, respectively. The results of present study firstly indicate that PS-ODN targeted to oprM can significantly restore the susceptibility of MDR-PA to existing antibiotics, which appears to be a novel strategy for treating MDR-PA infections.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Farmacorresistencia Bacteriana Múltiple , Oligodesoxirribonucleótidos Antisentido/metabolismo , Piperacilina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Infección Hospitalaria/microbiología , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/metabolismo , Expresión Génica , Humanos , Liposomas/metabolismo , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Oligodesoxirribonucleótidos Antisentido/genética , Polietileneimina/metabolismo , Infecciones por Pseudomonas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA