Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Fish Shellfish Immunol ; : 109886, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245187

RESUMEN

Apoptosis-associated speck-like protein containing a CARD (ASC) serves as a pivotal component within the inflammasome complex, playing a critical role in the activation of the innate immune response against pathogenic infection. However, the functional significance of inflammasome ASC in teleosts remains unclear. In this study, the coding sequence (CDS) region of ASC gene of Sebastes schlegelii (SsASC) was cloned, and we observed a high conservation of SsASC with teleosts through comprehensive bioinformatics analysis. SsASC and SsCaspase-1 were found to be highly expressed in immune tissues such as spleen and head kidney. Furthermore, our findings revealed that SsASC interacts with SsCaspase-1 through CARD-CARD interactions to generate oligomeric speck-like structures, whereas the PYD structural domain of SsASC forms only filamentous structures. To further understand the role of SsASC in combating Edwardsiella piscicida (E. piscicida) infection, we developed a SsASC knockdown model using in vivo siRNA injection and E. piscicida challenge via intraperitoneal injection. The model demonstrated that E. piscicida infection up-regulated SsASC expression, which was markedly reduced upon SsASC knockdown. Concurrently, E. piscicida colonization was significantly enhanced in the knockdown group, accompanied by a suppression of inflammatory factor expression. These findings confirm the pivotal antibacterial and anti-infective role of SsASC in the Sebastes schlegelii immune response upon E. piscicida stimulation. Our study highlights the significance of SsASC in the innate immune defense mechanism of teleosts against bacterial pathogens.

2.
J Adv Res ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245339

RESUMEN

INTRODUCTION: Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES: In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS: Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS: Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.

3.
Plant Cell ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235115

RESUMEN

Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39283715

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) are enzymes that catalyze the hydrolysis of cyclic adenosine monophosphate AMP (cAMP) and/or cyclic guanosine monophosphate (cGMP). PDE inhibitors can mitigate chronic pain and depression when these disorders occur individually; however, there is limited understanding of their role in concurrent chronic pain and depression. We aimed to evaluate the mechanisms of action of PDE using two mouse models of concurrent chronic pain and depression. METHODS: C57BL/6J mice were subjected to partial sciatic nerve ligation (PSNL) to induce chronic neuropathic pain or injected with complete Freund's adjuvant (CFA) to induce inflammatory pain, and both animals showed depression-like behavior. First, we determined the change in PDE expression in both animal models. Next, we determined the effect of PDE7 inhibitor BRL50481 or hippocampal PDE7A knockdown on PSNL- or CFA-induced chronic pain and depression-like behavior. We also investigated the role of cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling and neuroinflammation in the effect of PDE7A inhibition on PSNL- or CFA-induced chronic pain and depression-like behavior. RESULTS: This induction of chronic pain and depression in the two animal models upregulated hippocampal PDE7A. Oral administration of PDE7 inhibitor, BRL50481, or hippocampal PDE7A knockdown significantly reduced mechanical hypersensitivity and depression-like behavior. Hippocampal PDE7 inhibition reversed PSNL- or CFA-induced downregulation of cAMP and BDNF and the phosphorylation of PKA, CREB and p65. cAMP agonist forskolin, reversed these changes and caused milder behavioral symptoms of pain and depression. BRL50481 reversed neuroinflammation in the hippocampus in PSNL mice. CONCLUSIONS: Hippocampal PDE7A mediated concurrent chronic pain and depression in both mouse models by inhibiting cAMP-PKA-CREB-BDNF signaling Inhibiting PDE7A or activating cAMP-PKA-CREB-BDNF signaling are potential strategies to treat concurrent chronic pain and depression.

5.
Adv Sci (Weinh) ; : e2404854, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258786

RESUMEN

Cancer is a systemic heterogeneous disease involving complex molecular networks. Tumor formation involves an epithelial-mesenchymal transition (EMT), which promotes both metastasis and plasticity of cancer cells. Recent experiments have proposed that cancer cells can be transformed into adipocytes via a combination of drugs. However, the underlying mechanisms for how these drugs work, from a molecular network perspective, remain elusive. To reveal the mechanism of cancer-adipose conversion (CAC), this study adopts a systems biology approach by combing mathematical modeling and molecular experiments, based on underlying molecular regulatory networks. Four types of attractors are identified, corresponding to epithelial (E), mesenchymal (M), adipose (A) and partial/intermediate EMT (P) cell states on the CAC landscape. Landscape and transition path results illustrate that intermediate states play critical roles in the cancer to adipose transition. Through a landscape control approach, two new therapeutic strategies for drug combinations are identified, that promote CAC. These predictions are verified by molecular experiments in different cell lines. The combined computational and experimental approach provides a powerful tool to explore molecular mechanisms for cell fate transitions in cancer networks. The results reveal underlying mechanisms of intermediate cell states that govern the CAC, and identified new potential drug combinations to induce cancer adipogenesis.

6.
Ecotoxicol Environ Saf ; 283: 116830, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39111240

RESUMEN

The primary purpose of present study was to explore the effects of arsenic exposure on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear transcription factor-κB (NF-κB) signaling pathway in the hippocampus of offspring mice at different developmental stages. Sodium arsenite (NaAsO2) at doses of 0, 15, 30 or 60 mg/L administered to female mice and their pups. The nuclear translocation levels of NF-κB were assessed by EMSA. Real-time RT-PCR was used to measure Akt, NF-κB and PI3K mRNA levels. Protein expressions of PI3K, p-Akt, inhibitor kappa B kinase (IKK), p-NF-κB, protein kinase A (PKA), inhibitor kappa B (IκB), and cAMP response element-binding protein (CREB) were measured by Western blot. Results disclosed that exposure to 60 mg/L NaAsO2 could suppress NF-κB levels of nuclear translocation of postnatal day (PND) 20 and PND 40 mice. Arsenic downregulated the transcriptional and translational levels of PI3K, Akt and NF-κB. Additionally, protein expressions of p-IKK, p-IκB, PKA and p-CREB also reduced. Taken together, results of present study indicated that arsenic could downregulate the PI3K/Akt/NF-κB signaling pathway, particularly on PND 40, which might be involved in the cognitive impairments.


Asunto(s)
Arsénico , Hipocampo , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Femenino , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Arsénico/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad , Embarazo , Masculino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
7.
Toxics ; 12(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195719

RESUMEN

Nanoplastics, as emerging environmental pollutants, can transport contaminants across marine environments, polluting pristine ecosystems and being ingested by marine organisms. This transfer poses a severe threat to global aquatic ecosystems and potentially impacts human health through the food chain. Neurobehavioral and reproductive toxicity are critical areas of concern because they directly affect the survival, health, and population dynamics of aquatic species, which can have cascading effects on the entire ecosystem. Using zebrafish as a model organism, we investigated the toxic effects of environmental concentrations of polystyrene nanoplastics (PS-NPs). Behavioral assessments, including the novel tank test and open field test, demonstrated significant neurobehavioral changes, indicating increased anxiety and depressive behaviors. A pathological analysis of brain and gonadal tissues, along with evaluations of neurobehavioral and reproductive toxicity biomarkers, revealed that exposure to PS-NPs leads to brain tissue lesions, inflammatory responses, oxidative stress activation, hormone level disruptions, and gonadal damage. Real-time quantitative PCR studies of reproductive gene expression further showed that PS-NPs disrupt the endocrine regulation pathways of the brain-pituitary-gonadal (BPG) axis, causing reproductive toxicity with sex-specific differences. These findings provide crucial insights into the impacts of nanoplastics on aquatic organisms and their ecological risks, offering theoretical support for future environmental protection and pollutant management efforts.

8.
Front Immunol ; 15: 1441838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114653

RESUMEN

Background: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP patients is limited, with few machine learning (ML) models analyzing immune indicators. Methods: A retrospective cohort study was conducted at Xinhua Hospital, affiliated with Shanghai Jiaotong University. Patients meeting predefined criteria were included and unsupervised clustering was used to identify phenotypes. Patients with distinct phenotypes were also compared in different outcomes. By machine learning methods, we comprehensively assess the disease severity of CAP patients. Results: A total of 1156 CAP patients were included in this research. In the training cohort (n=809), we identified three immune phenotypes among patients: Phenotype A (42.0%), Phenotype B (40.2%), and Phenotype C (17.8%), with Phenotype C corresponding to more severe disease. Similar results can be observed in the validation cohort. The optimal prognostic model, SuperPC, achieved the highest average C-index of 0.859. For predicting CAP severity, the random forest model was highly accurate, with C-index of 0.998 and 0.794 in training and validation cohorts, respectively. Conclusion: CAP patients can be categorized into three distinct immune phenotypes, each with prognostic relevance. Machine learning exhibits potential in predicting mortality and disease severity in CAP patients by leveraging clinical immunological data. Further external validation studies are crucial to confirm applicability.


Asunto(s)
Infecciones Comunitarias Adquiridas , Aprendizaje Automático , Fenotipo , Neumonía , Humanos , Infecciones Comunitarias Adquiridas/inmunología , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/mortalidad , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Neumonía/inmunología , Neumonía/diagnóstico , Neumonía/mortalidad , Anciano , Medición de Riesgo , Índice de Severidad de la Enfermedad , Adulto , Inmunofenotipificación
9.
J Adv Res ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197817

RESUMEN

INTRODUCTION: Simultaneous detection of proteins and mRNA within a single extracellular vesicle (EV) enables comprehensive analysis of specific EVs subpopulations, significantly advancing cancer diagnostics. However, developing a sensitive and user-friendly approach for simultaneously detecting multidimensional biomarkers in single EV is still challenging. OBJECTIVES: To facilitate the analysis of multidimensional biomarkers in EVs and boost its clinical application, we present a versatile droplet digital system facilitating the concurrent detection of membrane proteins and mRNA at the single EV level with high sensitivity and specificity. METHODS: The antibody-DNA conjugates were firstly prepared for EVs protein biomarkers recognition and signal transformation. Coupling with the assembled triplex droplet digital PCR system, a versatile droplet digital analysis assay for simultaneous detection of membrane protein and mRNA at a single EV level was developed. RESULTS: Our new droplet digital system displayed high sensitivity and specificity. Additionally, its clinical application was validated in a breast cancer cohort. As expected, this assay has demonstrated superior performance in distinguishing breast cancer from healthy individuals and benign controls through combined detection of EVs protein and mRNA markers compared to any single kind marker detections, especially for patients with breast cancer at early stage (AUC=0.9229). CONCLUSION: Consequently, this study proposes a promising strategy for accurately identifying and analyzing specific EV subgroups through the co-detection of proteins and mRNA at the single EV level, holding significant potential for future clinical applications.

10.
Front Plant Sci ; 15: 1433220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175489

RESUMEN

Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Herein, a meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops (maize, rice, and wheat). On average, compared with no straw return, straw return significantly (p< 0.05) increased grain yield (+4.3%), protein content (+2.5%), total amino acids concentration (+1.2%), and grain phosphorus content (+3.6%), respectively. Meanwhile, straw return significantly (p< 0.05) decreased rice chalky grain rate (-14.4%), overall grain hardness (-1.9%), and water absorption of maize and wheat (-0.5%), respectively. Moreover, straw return effects on grain yield and quality traits were infected by cultivated crop types, straw return amounts, straw return methods, and straw return duration. Our findings illustrated that direct straw return increased three main crop grain yields and improved various quality traits among different agricultural production areas. Although improper straw return may increase plant disease risk and affect seed germination, our results suggest that full straw return with covered or plough mode is a more suitable way to enhance grain yield and quality. Our study also highlights that compared with direct straw return, straw burning or composting before application may also be beneficial to farmland productivity and sustainability, but comparative studies in this area are still lacking.

11.
J Prosthodont ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146035

RESUMEN

A digital workflow is presented for multiple transfers of targeted jaw relation and restorative spaces from interim to definitive restorations in patients with severe tooth wear. Following analysis of the targeted restorative space, segmented arch stereolithographic templates were digitally created and fabricated for precise control of reduction depth. Then, the jaw relation was transferred from the initially determined stabilization splint to the temporary fixed restoration and definitive restoration by using a digital articulator. This digital approach yielded a stabilized jaw relationship and restorative spaces transferring effect throughout successive stages of occlusal reconstruction resulting in satisfactory prosthetic outcomes.

12.
Langmuir ; 40(32): 17090-17097, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39099469

RESUMEN

Unwanted icing on exposed surfaces poses significant risks, driving the quest for effective anti-icing mechanisms. While fracture mechanics concepts have been developed for designing coatings that weaken the ice-solid interface on soft surfaces, the factors that dictate ice adhesion strength and its counterpart, ice removal force, on hard surfaces remain poorly understood. In this study, we employ molecular dynamics simulations to investigate the interface rupture between ice and a hard solid substrate. The results indicate that the ice adhesion strength is contingent on the length of the ice cube. By examining the shearing behavior, we reveal a nanoscale critical force-bearing length. The shear force required to detach the ice scales proportionally with the length of the ice cube when it is smaller than the critical length. Once the ice cube length exceeds the critical length, the shear force stabilizes at a constant maximum value, revealing the existence of a maximum ice-removal force. The results align with the so-called strength versus toughness-controlled deicing regimes and are in agreement with cohesive zone modeling at the continuum length scale and recent experimental results. Our results extend this understanding to the nanoscale, confirming consistency between macro and micro scales. This consistency suggests that the toughness of the ice-solid interface is intrinsically governed by ice-surface interactions. By unraveling key intrinsic factors and their scale-dependent effects on the interface rupture of ice on surfaces, this study lays a solid theoretical foundation for the design and fabrication of next-generation anti-icing surfaces.

13.
Environ Res ; 260: 119663, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39043354

RESUMEN

As an emerging contaminant, microplastics (MPs) have received considerable attention for their potential threat to the soil environment. However, the response of soil bacterial and fungal communities to MPs exposure remains unclear. In this study, we conducted a global meta-analysis of 95 publications and 2317 observations to assess the effects of nonbiodegradable MP properties and exposure conditions on soil microbial biomass, alpha and beta diversity, and community structure. Our results indicate that MPs increased (p < 0.05) soil active microbial biomass by 42%, with the effect varying with MPs type, exposure concentration, exposure time and soil pH. MPs concentration was identified as the most important factor controlling the response of soil microbial biomass to MPs. MPs addition decreased (p < 0.05) the soil bacterial Shannon and Chao1 indices by 2% and 3%, respectively, but had limited effects (p > 0.05) on soil fungal Shannon and Chao1 indices. The type of MPs and exposure time determined the effects of MPs on bacterial Shannon and Chao1 indices, while the type of MPs and soil pH controlled the response ratios of fungal Shannon and Chao1 indices to MPs. Specifically, soil organic carbon (SOC) was the major factor regulating the response ratio of bacterial alpha diversity index to MPs. The presence of MPs did not affect soil bacterial community structure and beta diversity. Our results highlight that MPs reduced bacterial diversity and richness but increased the soil active microbial biomass, suggesting that MPs could disrupt biogeochemical cycles by promoting the growth of specific microorganisms.


Asunto(s)
Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Microplásticos/análisis , Bacterias/clasificación , Hongos/clasificación , Microbiota , Suelo/química , Biomasa , Biodiversidad
14.
J Ethnopharmacol ; 334: 118540, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992397

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Babaodan (BBD) is a unique Chinese medication utilized in traditional Chinese medicine. It can eliminate toxins, induce diuresis, and eliminate yellowish hue. In addition to treating acute and chronic viral hepatitis, cholecystitis, cholangitis, and urinary tract infections, BBD has garnered popularity as a substitution treatment for several malignant cancers, particularly hepatocellular carcinoma (HCC). AIM OF THE STUDY: To elucidate the efficacy and mechanism of BBD alone and combined with camrelizumab (CLM) for treating HCC. METHODS: We investigated the effects of BBD on the HCC tumor microenvironment in vivo. Furthermore, we evaluated its effects on tumor growth and metastasis induced by M2 macrophages in vitro. RESULTS: In a mouse model of orthotopic HCC, BBD decreased tumor growth. Furthermore, it increased the M1/M2 macrophage ratio and CD8+ T-cell abundance in mice. In addition, BBD reversed HCC cell proliferation and metastasis induced by M2 macrophages, increased the anti-HCC effect of low-dose CLM, and attenuated organ damage induced by high-dose CLM. Lastly, BBD enhanced the efficacy of CLM via the PI3K/AKT/mTOR signaling pathway. CONCLUSION: BBD increases the antitumor effect of CLM by modulating the tumor immune microenvironment and attenuating its the toxic side effects of CLM.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Macrófagos , Microambiente Tumoral , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Proliferación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Anticuerpos Monoclonales Humanizados/farmacología , Microambiente Tumoral/efectos de los fármacos , Masculino , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Sinergismo Farmacológico , Metástasis de la Neoplasia
15.
J Orthop Surg Res ; 19(1): 390, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965626

RESUMEN

BACKGROUND: Poor neurological recovery in patients after anterior cervical discectomy and fusion has been frequently reported; however, no study has analyzed the preoperative imaging characteristics of patients to investigate the factors affecting surgical prognosis. The purpose of this study was to investigate the factors that affect the preoperative imaging characteristics of patients and their influence on poor neurologic recovery after anterior cervical discectomy and fusion. METHODS: We retrospectively analyzed the clinical data of 89 patients who met the criteria for anterior cervical discectomy and fusion for the treatment of single-level cervical spondylotic myelopathy and evaluated the patients' neurological recovery based on the recovery rate of the Japanese Orthopaedic Association (JOA) scores at the time of the final follow-up visit. Patients were categorized into the "good" and "poor" groups based on the JOA recovery rates of ≥ 50% and < 50%, respectively. Clinical information (age, gender, body mass index, duration of symptoms, preoperative JOA score, and JOA score at the final follow-up) and imaging characteristics (cervical kyphosis, cervical instability, ossification of the posterior longitudinal ligament (OPLL), calcification of herniated intervertebral discs, increased signal intensity (ISI) of the spinal cord on T2-weighted imaging (T2WI), and degree of degeneration of the discs adjacent to the fused levels (cranial and caudal) were collected from the patients. Univariate and binary logistic regression analyses were performed to identify risk factors for poor neurologic recovery. RESULTS: The mean age of the patients was 52.56 ± 11.18 years, and the mean follow-up was 26.89 ± 11.14 months. Twenty patients (22.5%) had poor neurological recovery. Univariate analysis showed that significant predictors of poor neurological recovery were age (p = 0.019), concomitant OPLL (p = 0.019), concomitant calcification of herniated intervertebral discs (p = 0.019), ISI of the spinal cord on T2WI (p <0.05), a high grade of degeneration of the discs of the cranial neighboring levels (p <0.05), and a high grade of discs of the caudal neighboring levels (p <0.05). Binary logistic regression analysis showed that ISI of the spinal cord on T2WI (p = 0.001 OR = 24.947) and high degree of degeneration of adjacent discs on the cranial side (p = 0.040 OR = 6.260) were independent risk factors for poor neurological prognosis. CONCLUSION: ISI of the spinal cord on T2WI and high degree of cranial adjacent disc degeneration are independent risk factors for poor neurological recovery after anterior cervical discectomy and fusion. A comprehensive analysis of the patients' preoperative imaging characteristics can help in the development of surgical protocols and the management of patients' surgical expectations.


Asunto(s)
Vértebras Cervicales , Discectomía , Recuperación de la Función , Fusión Vertebral , Humanos , Discectomía/métodos , Discectomía/efectos adversos , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Estudios Retrospectivos , Factores de Riesgo , Anciano , Adulto , Espondilosis/cirugía , Espondilosis/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios de Seguimiento , Resultado del Tratamiento
16.
PeerJ Comput Sci ; 10: e2083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983190

RESUMEN

Aiming to automatically monitor and improve stereoscopic image and video processing systems, stereoscopic image quality assessment approaches are becoming more and more important as 3D technology gains popularity. We propose a full-reference stereoscopic image quality assessment method that incorporate monocular and binocular features based on binocular competition and binocular integration. To start, we create a three-channel RGB fused view by fusing Gabor filter bank responses and disparity maps. Then, using the monocular view and the RGB fusion view, respectively, we extract monocular and binocular features. To alter the local features in the binocular features, we simultaneously estimate the saliency of the RGB fusion image. Finally, the monocular and binocular quality scores are calculated based on the monocular and binocular features, and the quality scores of the stereo image prediction are obtained by fusion. Performance testing in the LIVE 3D IQA database Phase I and Phase II. The results of the proposed method are compared with newer methods. The experimental results show good consistency and robustness.

17.
Br J Pharmacol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992898

RESUMEN

BACKGROUND AND PURPOSE: Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH: Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated ß-galactosidase (SA-ß-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS: CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS: Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.

18.
Plants (Basel) ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999682

RESUMEN

The accurate instance segmentation of individual crop plants is crucial for achieving a high-throughput phenotypic analysis of seedlings and smart field management in agriculture. Current crop monitoring techniques employing remote sensing predominantly focus on population analysis, thereby lacking precise estimations for individual plants. This study concentrates on maize, a critical staple crop, and leverages multispectral remote sensing data sourced from unmanned aerial vehicles (UAVs). A large-scale SAM image segmentation model is employed to efficiently annotate maize plant instances, thereby constructing a dataset for maize seedling instance segmentation. The study evaluates the experimental accuracy of six instance segmentation algorithms: Mask R-CNN, Cascade Mask R-CNN, PointRend, YOLOv5, Mask Scoring R-CNN, and YOLOv8, employing various combinations of multispectral bands for a comparative analysis. The experimental findings indicate that the YOLOv8 model exhibits exceptional segmentation accuracy, notably in the NRG band, with bbox_mAP50 and segm_mAP50 accuracies reaching 95.2% and 94%, respectively, surpassing other models. Furthermore, YOLOv8 demonstrates robust performance in generalization experiments, indicating its adaptability across diverse environments and conditions. Additionally, this study simulates and analyzes the impact of different resolutions on the model's segmentation accuracy. The findings reveal that the YOLOv8 model sustains high segmentation accuracy even at reduced resolutions (1.333 cm/px), meeting the phenotypic analysis and field management criteria.

19.
Cell Death Discov ; 10(1): 344, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080255

RESUMEN

Breast cancer (BRCA) has become the most common type of cancer in women. Improving the therapeutic response remains a challenge. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a classic tumour suppressor with emerging new functions discovered in recent years, and myeloid PTEN loss has been reported to impair antitumour immunity. In this study, we revealed a novel mechanism by which myeloid PTEN potentially affects antitumour immunity in BRCA. We detected accelerated stress granule (SG) assembly under oxidative stress in PTEN-deficient bone marrow-derived macrophages (BMDMs) through the EGR1-promoted upregulation of TIAL1 transcription. PI3K/AKT/mTOR (PAM) pathway activation also promoted SG formation. ATP consumption during SG assembly in BMDMs impaired the phagocytic ability of 4T1 cells, potentially contributing to the disruption of antitumour immunity. In a BRCA neoadjuvant cohort, we observed a poorer response in myeloid PTENlow patients with G3BP1 aggregating as SGs in CD68+ cells, a finding that was consistent with the observation in our study that PTEN-deficient macrophages tended to more readily assemble SGs with impaired phagocytosis. Our results revealed the unconventional impact of SGs on BMDMs and might provide new perspectives on drug resistance and therapeutic strategies for the treatment of BRCA patients.

20.
Respir Res ; 25(1): 291, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080660

RESUMEN

Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Fosfoglicerato Quinasa , Piroptosis , Piroptosis/fisiología , Piroptosis/efectos de los fármacos , Animales , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Glucólisis/fisiología , Glucólisis/efectos de los fármacos , Masculino , Lipopolisacáridos/toxicidad , Ratones Noqueados , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA