Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492343

RESUMEN

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Nitrilos , Sulfonas , Ratones , Masculino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Lesiones Encefálicas/metabolismo
2.
Bone ; 113: 41-48, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29763751

RESUMEN

PURPOSE: Osteoporosis is a common global health problem characterized by low bone mineral density (BMD) and increased risk of fracture. Genome-wide association studies (GWAS) have identified >100 genetic loci associated with BMD. However, the functional genes responsible for most associations remain largely unknown. We conducted an innovative summary statistic data-based Mendelian randomization (SMR) analysis to identify novel causal genes associated with BMD and explored their potential functional significance. METHODS: After quality control of the largest GWAS meta-analysis data of BMD and the largest expression quantitative trait loci (eQTL) meta-analysis data from peripheral blood samples, 5967 genes were tested using the SMR method. Another eQTL data was used to verify the results. Next we performed a fine-mapping association analysis to investigate the functional SNP in the identified loci. Weighted gene co-expression network analysis (WGCNA) was used to explore functional relationships for the identified novel genes with known putative osteoporosis genes. Further, we assessed functions of the identified genes through in vitro cellular study or previous functional studies. RESULTS: We identified two potentially causal genes (ASB16-AS1 and SYN2) associated with BMD. SYN2 was a novel osteoporosis candidate gene and ASB16-AS1 locus was known to be associated with BMD but was not the nearest gene to the top GWAS SNP. Fine-mapping association analysis showed that rs184478 and rs795000 was predicted to be possible causal SNPs in ASB16-AS1 and SYN2, respectively. ASB16-AS1 co-expressed with several known putative osteoporosis risk genes. In vitro cellular study showed that over-expressed ASB16-AS1 increased the expression of osteoblastogenesis related genes (BMP2 and ALPL), indicating its functional significance. CONCLUSION: Our findings support that ASB16-AS1 and SYN2 may represent two novel functional genes underlying BMD variation. The findings provide a basis for further functional mechanistic studies.


Asunto(s)
Densidad Ósea/genética , Predisposición Genética a la Enfermedad/genética , Osteoporosis/genética , Sinapsinas/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Humanos , Sitios de Carácter Cuantitativo
3.
Sci Rep ; 7: 46038, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401914

RESUMEN

End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy.


Asunto(s)
Regeneración Tisular Dirigida , Regeneración Nerviosa , Nervios Periféricos/fisiopatología , Ingeniería de Tejidos/métodos , Animales , Criogeles , Fibroblastos/patología , Proteína GAP-43/metabolismo , Gelatina , Ratones , Músculo Esquelético/inervación , Células 3T3 NIH , Nervios Periféricos/patología , Porosidad , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA