Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229237

RESUMEN

Ultra-high dose rate ("FLASH") radiotherapy (>40-60 Gy/s) is a promising new radiation modality currently in human clinical trials. Previous studies showed that FLASH proton radiotherapy (FR) improves toxicity of normal tissues compared to standard proton radiotherapy (SR) without compromising anti-tumor effects. Understanding this normal tissue sparing effect may offer insight into how toxicities from cancer therapy can be improved. Here, we show that compared to SR, FR resulted in improved acute weight recovery and survival in mice after whole-abdomen irradiation. Improved morbidity and mortality after FR were associated with greater proliferation of damage-induced epithelial progenitor cells followed by improved tissue regeneration. FR led to the accelerated differentiation of revival stem cells (revSCs), a rare damage-induced stem cell required for intestinal regeneration, and to qualitative and quantitative changes in activity of signaling pathways important for revSC differentiation and epithelial regeneration. Specifically, FR resulted in greater infiltration of macrophages producing TGF-ß, a cytokine important for revSC induction, that was coupled to augmented TGF-ß signaling in revSCs. In pericryptal fibroblasts, FR resulted in greater type I IFN (IFN-I) signaling, which directly stimulates production of FGF growth factors supporting revSC proliferation. Accordingly, the ability of FR to improve epithelial regeneration and morbidity was dependent on IFN-I signaling. In the context of SR, however, IFN-I had a detrimental effect and promoted toxicity. Thus, a tissue-level signaling network coordinated by differences in IFN-I signaling and involving stromal cells, immune cells, and revSCs underlies the ability of FLASH to improve normal tissue toxicity without compromising anti-tumor efficacy.

2.
Bio Protoc ; 13(18): e4825, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37753470

RESUMEN

Inflammation of the gastrointestinal tract is a prevalent pathology in diseases such as inflammatory bowel disease (IBD). Currently, there are no therapies to prevent IBD, and available therapies to treat IBD are often sub-optimal. Thus, an unmet need exists to better understand the molecular mechanisms underlying intestinal tissue responses to damage and regeneration. The recent development of single-cell RNA (sc-RNA) sequencing-based techniques offers a unique opportunity to shed light on novel signaling pathways and cellular states that govern tissue adaptation or maladaptation across a broad spectrum of diseases. These approaches require the isolation of high-quality cells from tissues for downstream transcriptomic analyses. In the context of intestinal biology, there is a lack of protocols that ensure the isolation of epithelial and non-epithelial compartments simultaneously with high-quality yield. Here, we report two protocols for the isolation of epithelial and stromal cells from mouse and human colon tissues under inflammatory conditions. Specifically, we tested the feasibility of the protocols in a mouse model of dextran sodium sulfate (DSS)-induced colitis and in human biopsies from Crohn's patients. We performed sc-RNA sequencing analysis and demonstrated that the protocol preserves most of the epithelial and stromal cell types found in the colon. Moreover, the protocol is suitable for immunofluorescence staining of surface markers for epithelial, stromal, and immune cell lineages for flow cytometry analyses. This optimized protocol will provide a new resource for scientists to study complex tissues such as the colon in the context of tissue damage and regeneration. Key features • This protocol allows the isolation of epithelial and stromal cells from colon tissues. • The protocol has been optimized for tissues under inflammatory conditions with compromised cell viability. • This protocol is suitable for experimental mouse models of colon inflammation and human biopsies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA