Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39134369

RESUMEN

BACKGROUND: The use of a Pipeline Embolization Device (PED) in combination with coils (PEDC) to treat intracranial aneurysms remains unclear as to whether it offers significant benefits for the patients since the results have varied. PURPOSE: This study aimed to investigate the clinical outcome of PEDC compared to PED in treating intracranial aneurysms. DATA SOURCES: We systematically searched the articles from PubMed, Web of Science, and the Cochrane Library databases published before January 25, 2024. STUDY SELECTION: We selected studies comparing PEDC vs. PED to treat intracranial aneurysms. Patients treated with PEDC but using dense coiling were excluded from the study. DATA ANALYSIS: The clinical outcomes observed in this meta-analysis were intraprocedural complications, postoperative complications (stenosis, stroke, hemorrhage, mortality), favorable outcome (mRS ≤ 2), complete occlusion rate, and retreatment rate. Forest plot was used to analyze pooled Odds Ratio (OR) of clinical outcomes. DATA SYNTHESIS: A total of 3001 subjects from nine observational studies were included. PEDC was mainly used to treat larger aneurysms. PEDC has a significantly higher complete occlusion rate at 6 months [OR= 2.66, 95% CI(1.26, 5.59), p= 0.01], a lower retreatment rate [OR= 0.18, 95% CI(0.05, 0.07), p= 0.010], higher stroke-related complications [OR= 1.66, 95% CI(1.16, 2.37), p= 0.005], and higher hemorrhage-related complications [OR= 1.98, 95% CI(1.22, 3.21), p = 0.005]. There was no significant difference in intraprocedural complications, stenosis-related complications, mortality, favorable outcomes, and complete occlusion at the end of the study. LIMITATIONS: No randomized controlled trials have been performed comparing PEDC and PED. Considering that all the included studies were observational, the patients' baseline characteristics were not completely balanced. CONCLUSIONS: This meta-analysis study showed that PEDC in large intracranial aneurysms induces a faster complete occlusion rate at 6 months and a lower retreatment rate. However, it increases the risk of stroke-related postoperative complications, and the faster complete aneurysm occlusion rate found in this study did not correlate with a reduction in long-term aneurysm or distal artery ruptures. Thus, this study suggests the need to find a better strategy to improve long-term hemorrhage-related complications in large intracranial aneurysms. ABBREVIATIONS: F = female; FDDs = flow-diverter devices; M = male; NOS = Newcastle-Ottawa Scale; PED = pipeline embolization device; PEDC = pipeline embolization device in combination with coils.

2.
J Appl Toxicol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187442

RESUMEN

Methylmercury (MeHg) is an environmental toxin known to damage the central nervous system. When pregnant women ingest seafood, which may contain accumulated MeHg, fetal development may be affected. The embryonic period, a time of major epigenetic change, is susceptible to epigenetic disruptions due to chemical exposure. Therefore, understanding the molecular mechanism underlying MeHg's effects on neuronal development requires consideration of epigenetic factors. In this study, we investigated epigenetic modifications in the synaptophysin (SYP) and discs large MAGUK scaffold protein 4 (DLG4) genes. LUHMES cells were exposed to 1 nM MeHg for 6 days during days 2-8 of neural differentiation. MeHg exposure significantly reduced the number of spikes observed on day 16 of differentiation. Both mRNA and protein expression levels of SYP and DLG4 were significantly decreased by MeHg exposure. Additionally, MeHg treatment reduced acetyl histone H3 levels associated with transcriptional activity in the SYP gene while increasing histone H3 lysine 27 tri-methylation (H3K27me3) levels related to transcriptional repression. Conversely, regarding the DLG4 gene, MeHg exposure increased H3K27me3 levels. Differential changes in DNA methylation (high and low methylation states) were observed in the SYP and DLG4 genes due to MeHg exposure depending on CpG site position. In conclusion, this study suggests that epigenetic changes, particularly histone modifications, contribute to decreased MeHg exposure-induced SYP and DLG4 expression during neuronal differentiation.

3.
Biomed Res ; 45(4): 143-149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010190

RESUMEN

Copper (Cu) is known to induce oxidative stress and apoptosis in the liver, kidney, and brain. We previously demonstrated the molecular mechanism underlying the Cu-induced hepatic diurnal variation. However, the cellular molecule(s) involved in Cu-induced renal chronotoxicity remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying Cu-induced diurnal toxicity in the kidneys. We evaluated cell viability and clock gene expression levels in mouse renal cortex tubular cells (MuRTE61 cells) after Cu treatment. We also examined the Cu homeostasis- and apoptosis-related gene levels after period 1 (Per1) overexpression in MuRTE61 cells. Cu treatment decreased MuRTE61 cell viability in a dose-dependent manner. It increased the Per1 expression levels after 24 h. Notably, Per1 overexpression alleviated the Cu-induced inhibition of MuRTE61 cell viability. Moreover, Per1 overexpression downregulated the cleaved caspase-3 and reduced Cu levels by upregulating the antioxidant 1 copper chaperone (Atox1) levels. These results suggest that Cu-induced renal toxicity is associated with Per1 expression via the regulation of the copper chaperone, Atox1.


Asunto(s)
Supervivencia Celular , Cobre , Riñón , Proteínas Circadianas Period , Animales , Ratones , Cobre/toxicidad , Supervivencia Celular/efectos de los fármacos , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Riñón/metabolismo , Riñón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Transportadoras de Cobre/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
4.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38962411

RESUMEN

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Asunto(s)
Proliferación Celular , Fisura del Paladar , Hueso Paladar , Extractos Vegetales , Tretinoina , Humanos , Tretinoina/farmacología , Proliferación Celular/efectos de los fármacos , Hueso Paladar/efectos de los fármacos , Hueso Paladar/embriología , Hueso Paladar/citología , Extractos Vegetales/farmacología , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 725: 150266, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38878759

RESUMEN

Cisplatin (CDDP) is a platinum-based anticancer drug widely prescribed for its effectiveness in treating various forms of cancer. However, its major side effect is nephrotoxicity. Although several methods have been developed to mitigate CDDP-induced nephrotoxicity, an optimal approach has yet to be established. This study aimed to investigate the "chronotoxicity" of CDDP as a potential strategy to reduce its side effects. Male ICR mice were treated with CDDP (20 mg/kg, intraperitoneal injection, one shot) at zeitgeber time (ZT) 2 or ZT14 (light or dark phase). After 72 h, we collected plasma and kidney and evaluated several markers. We found that body weight change between ZT2 and ZT14 by CDDP was comparable. In contrast, many toxicological factors, such as plasma blood urine nitrogen, plasma creatinine, renal oxidative stress (malondialdehyde), DNA damage (γH2AX), acute kidney injury biomarker (KIM-1), and inflammation (Tnfα), were significantly induced at ZT14 compared to than that of ZT2. Our present data suggested that chronotoxicology might provide beneficial information on the importance of administration timings for toxic evaluations and unacceptable side effects.


Asunto(s)
Antineoplásicos , Ritmo Circadiano , Cisplatino , Riñón , Ratones Endogámicos ICR , Animales , Cisplatino/toxicidad , Masculino , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Ratones , Ritmo Circadiano/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
6.
Biochem Biophys Res Commun ; 696: 149516, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241808

RESUMEN

Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.


Asunto(s)
Fisura del Paladar , Células Madre Mesenquimatosas , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/genética
7.
J Toxicol Sci ; 49(1): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38191190

RESUMEN

Cleft palate (CP) is one of the most common birth defects and is caused by a combination of genetic and/or environmental factors. Environmental factors such as pharmaceutical exposure in pregnant women are known to induce CP. Recently, microRNA (miRNA) was found to be affected by environmental factors. The aim of the present study was to investigate the involvement of miRNA against phenytoin (PHE)-induced inhibition of proliferation in human embryonic palatal mesenchymal (HEPM) cells. We demonstrated that PHE inhibited HEPM cell proliferation in a dose-dependent manner. We found that treatment with PHE downregulated cyclin-D1 and cyclin-E expressions in HEPM cells. Furthermore, PHE increased miR-4680-3p expression and decreased two downstream genes (ERBB2 and JADE1). Importantly, an miR-4680-3p-specific inhibitor restored HEPM cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with PHE. These results suggest that PHE suppresses cell proliferation via modulation of miR-4680-3p expression.


Asunto(s)
MicroARNs , Fenitoína , Embarazo , Humanos , Femenino , Fenitoína/toxicidad , MicroARNs/genética , Proliferación Celular , Hueso Paladar
8.
Nat Commun ; 15(1): 821, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280850

RESUMEN

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.


Asunto(s)
Fisura del Paladar , Ratones , Animales , Fisura del Paladar/genética , Multiómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica
9.
Cell Signal ; 113: 110980, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981065

RESUMEN

Previous studies have demonstrated that extracellular vesicles (EVs) from dental pulp stem cells (DPSCs), which release abundant hepatocyte growth factor (HGF) and transforming growth factor-ß1 (TGF-ß1), contribute to the pathogenesis of Sjögren's syndrome (SS). However, depending on the condition of DPSCs, this effect is often not achieved. In this study, we established induced pluripotent stem (iPS) cells highly capable of releasing HGF and TGF-ß1 and iPS cells barely capable of releasing them, and administered each EV to SS model mice to see if there was a difference in therapeutic effect. EVs were collected from each iPS cell and their characteristics and shapes were examined. When they were administered to SS model mice, the EVs from iPS cells with higher concentrations of HGF and TGF-ß1 showed significantly reduced inflammatory cell infiltration in salivary gland tissues, increased saliva volume, and decreased anti-SS-A and anti-SS-B antibodies. A comprehensive search of microRNA arrays for differences among those EVs revealed that EVs from iPS cells with higher concentrations of HGF and TGF-ß1 contained more of the let-7 family. Thereafter, we examined the expression of toll-like receptors (TLRs), which are said to be regulated by the let-7 family, by qPCR, and found decreased TLR4 expression. Focusing on MAPK, a downstream signaling pathway, we examined cytokine concentrations in mouse macrophage culture supernatants and Western blotting of murine splenic tissues and found higher concentrations of anti-inflammatory cytokines in the EVs-treated group and decreased TLR4, NF-κB and phosphorylation (p)-p-38 MAPK expression by Western blotting. Alternatively, p-Smad2/3 was upregulated in the EVs-treated group. Our findings suggest that the let-7 family in EVs may suppress the expression of TLR4 and NF-κB, which may be involved in the suppression of MAPK-mediated pro-inflammatory cytokine production.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Síndrome de Sjögren , Animales , Ratones , Vesículas Extracelulares/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Inmunidad Innata , Células Madre Pluripotentes Inducidas/metabolismo , FN-kappa B/metabolismo , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1
10.
Artículo en Inglés | MEDLINE | ID: mdl-38092388

RESUMEN

BACKGROUND: This study aimed to investigate diurnal variations in copper-induced hepatic toxicity and the molecular mechanisms underlying this chronotoxicity. METHODS: Male C57BL/6J mice were intraperitoneally injected with copper chloride (CuCl2) at zeitgeber time 2 (ZT2) or 14 (ZT14), twice per week for 5 or 8 weeks. Seventy-two hours after the final CuCl2 injection, the mice were euthanized, and plasma samples were collected. The livers and kidneys were collected and weighed. In vitro experiments were performed to assess cell viability and fluctuations in clock gene expression levels in Hepa1-6 cells after CuCl2 treatment. We examined copper homeostasis- and apoptosis-related genes under clock genes overexpression. RESULTS: Repeated CuCl2 administration for 8 weeks resulted in more severe toxicity at ZT14 compared to ZT2. CuCl2 administration at ZT14 elevated plasma aspartate aminotransferase, hepatic tumor necrosis factor-α, and interleukin-6 for 5 weeks, whereas the toxic effects of CuCl2 administration at ZT2 were weaker. Moreover, CuCl2 treatment inhibited Hepa1-6 cell viability in a dose-dependent manner. We observed increased expression of three clock genes (Ciart, Cry2, and Per1) after CuCl2 treatment. Among them, overexpression of Cry2 and Per1 accelerated CuCl2-induced inhibition of Hepa1-6 cell viability. Moreover, we found that the overexpression of Cry2 and Per1 regulates cleaved caspase-3 by modulating the copper transporter genes ATP7B and CTR1. CONCLUSION: These results suggest that CuCl2-induced diurnal toxicity is associated with Cry2 and Per1 expression through the regulation of copper transporter genes in mice.


Asunto(s)
Cobre , Factores de Transcripción , Masculino , Ratones , Animales , Cobre/toxicidad , Cobre/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Hígado/metabolismo , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
11.
Biol Pharm Bull ; 46(6): 824-829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258148

RESUMEN

Circadian rhythms are endogenous oscillators that regulate 24 h behavioral and physiological processes. Our previous investigation demonstrated that bromobenzene metabolite (4-bromocatechol: 4-BrCA) exhibited chronotoxicity (i.e., the nephrotoxicity induced by 4-BrCA was observed during the dark phase, while not observed at light phase in mice). However, the molecular mechanism is still unknown. The aim of the present study is to investigate the cellular molecule(s) involved in the 4-BrCA-induced nephrotoxicity using mouse renal cortex tubular cell lines (MuRTE61 cells). We found that 4-BrCA showed dose dependent (0.01-1 mM) cell proliferation defect in MuRTE61 cells. By treating with 0.03 mM 4-BrCA, we demonstrated that major clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) were significantly downregulated. Interestingly, the expression levels of two genes, Bmal1 and Clock, continued to decrease after 3 h of treatment with 4-BrCA, while Cry1, Per1, and Per2 were unchanged until 24 h of treatment. Moreover, BMAL1 and CLOCK levels are higher at light phase. We speculated that BMAL1 and CLOCK might function defensively against 4-BrCA-induced nephrotoxicity since the expression levels of Bmal1 and Clock were rapidly decreased. Finally, overexpression of Bmal1 and Clock restored 4-BrCA-induced cell proliferation defect in MuRTE61 cells. Taken together, our results suggest that Bmal1 and Clock have protective roles against 4-BrCA-induced nephrotoxicity.


Asunto(s)
Factores de Transcripción ARNTL , Bromobencenos , Ratones , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica
12.
Biomed Res ; 44(2): 73-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005285

RESUMEN

A cleft lip, with or without a cleft palate, is a common birth defect caused by environmental factors or genetic mutations. Environmental factors, such as pharmaceutical exposure in pregnant women, are known to induce cleft lip, with or without cleft palate in the child. This study aimed to investigate the protective effect of Sasa veitchii extract (SE) on phenytoin-induced inhibition of cell proliferation in human lip mesenchymal cells (KD cells) and human embryonic palatal mesenchymal cells (HEPM cells). We demonstrated that cell proliferation was inhibited by phenytoin in a dose-dependent manner in both KD and HEPM cells. Co-treatment with SE restored phenytoin-induced toxicity in KD cells but did not protect HEPM cells against phenytoin-induced toxicity. Several microRNAs (miR-27b, miR-133b, miR-205, miR-497-5p, and miR-655-3p) is reported to associate with cell proliferation in KD cells. We measured the seven kinds of microRNAs (miR27b-3p, miR-27b-5p, miR-133b, miR-205-3p, miR-205-5p, miR-497-5p, and miR-655-3p) and found that SE suppressed miR-27b-5p induced by phenytoin in KD cells. Furthermore, co-treatment with SE enhanced the expression of miR-27b-5p downstream genes (PAX9, RARA, and SUMO1). These results suggest that SE protects phenytoin-induced cell proliferation inhibition by modulating miR-27b-5p.


Asunto(s)
Labio Leporino , Fisura del Paladar , MicroARNs , Sasa , Embarazo , Niño , Humanos , Femenino , Fenitoína/farmacología , Sasa/genética , Sasa/metabolismo , Fisura del Paladar/inducido químicamente , Fisura del Paladar/genética , Labio Leporino/genética , MicroARNs/genética , Proliferación Celular/genética
13.
Biochim Biophys Acta Gen Subj ; 1867(5): 130331, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36804277

RESUMEN

This study determined the effect of brefeldin A (BFA) on the free N-glycomic profile of HepG2 cells to better understand the effect of blocking intracellular vesicle formation and transport of proteins from the endoplasmic reticulum to the Golgi apparatus. A series of exoglycosidase- and endoglycosidase-assisted analyses clarified the complex nature of altered glycomic profiles. A key feature of BFA-mediated alterations in Gn2-type glycans was the expression of unusual hybrid-, monoantennary- and complex-type free N-glycans (FNGs). BFA-mediated alterations in Gn1-type glycans were characterized by the expression of unusual hybrid- and monoantennary-FNGs, without significant expression of complex-type FNGs. A time course analysis revealed that sialylated hybrid- and complex-type Gn2-type FNGs were generated later than asialo-Gn2-type FNGs, and the expression profiles of Gn2-type FNGs and N-glycans were found to be similar, suggesting that the metabolic flux of FNGs is the same as that of protein-bound N-glycans. Subcellular glycomic analysis revealed that almost all FNGs were detected in the cytoplasmic extracts. Our data suggest that hybrid-, monoantennary- and complex-type Gn2-type FNGs were cleaved from glycoproteins in the cytosol by cytosolic PNGase, and subsequently digested by cytosolic endo-ß-N-acetylglucosaminidase (ENGase) to generate Gn1-type FNGs. The substrate specificity of ENGase explains the limited expression of complex Gn1 type FNGs.


Asunto(s)
Glicósido Hidrolasas , Polisacáridos , Humanos , Brefeldino A/farmacología , Células Hep G2 , Polisacáridos/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa
14.
J Toxicol Sci ; 47(12): 547-553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36450499

RESUMEN

Zinc (Zn) is one of the most essential trace elements in the body and an integral part of many enzyme systems. Zn deficiency is characterized by growth retardation, loss of appetite, and impaired immune function. In contrast, Zn overdoses can be associated with liver, kidney, and stomach damage. We focused on the "chronotoxicity," or the relationship between injection time and severity of chemical toxicity. The aim of this study was to investigate the chronotoxicity of Zn and the in vivo factors involved. Seven-week-old male ICR mice were administered Zn at six different time points per day (zeitgeber time [ZT]: ZT2, ZT6, ZT10, ZT14, ZT18, and ZT22). Mortality was monitored for 7-days after administration. The mice were tolerant to Zn administered at ZT2 and ZT6, and were highly sensitive at ZT14 and ZT18. Furthermore, when mice were administered a non-lethal dose of Zn, the levels of hepatic injury indicators (AST and ALT) were much higher at ZT14 than at ZT2. To explore the mechanism of Zn-induced diurnal hepatotoxicity, we performed an in vitro experiment, focusing on the clock genes. We found that Zn downregulated the expression levels of several clock genes, neuronal PAS domain protein 2 (Npas2) and Peroid2 (Per2), in Hepa1-6 cells. Interestingly, overexpression of both Npas2 and Per2 restored Zn-induced toxicity in Hepa1-6 cells. Since NPAS2 and PER2 are known to modulate the hepatic injury induced by carbon tetrachrolide or acetaminophen, our results suggest that Zn-induced diurnal toxicity may be associated with modulation of Npas2 and Per2 gene expression.


Asunto(s)
Sobredosis de Droga , Zinc , Masculino , Ratones , Animales , Ratones Endogámicos ICR , Zinc/toxicidad , Ratones Endogámicos , Hígado , Proteínas del Tejido Nervioso , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Circadianas Period
15.
J Bone Miner Metab ; 40(5): 839-852, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35947192

RESUMEN

INTRODUCTION: Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS: Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS: Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION: Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.


Asunto(s)
Fracturas Espontáneas , Animales , Apatitas , Colágeno Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Fracturas Espontáneas/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Integrasas , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteocalcina/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1866(9): 130168, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35594965

RESUMEN

Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.


Asunto(s)
Glicómica , Swainsonina , Animales , Glicosilación , Células Hep G2 , Humanos , Polisacáridos , Swainsonina/toxicidad
17.
Cell Mol Life Sci ; 79(6): 307, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35593968

RESUMEN

Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Sjögren , Animales , Autoanticuerpos/metabolismo , Modelos Animales de Enfermedad , Exocitosis , Ratones , Glándulas Salivales , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo
18.
Front Genet ; 13: 788259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401675

RESUMEN

Amelogenesis imperfecta is a congenital disorder within a heterogeneous group of conditions characterized by enamel hypoplasia. Patients suffer from early tooth loss, social embarrassment, eating difficulties, and pain due to an abnormally thin, soft, fragile, and discolored enamel with poor aesthetics and functionality. The etiology of amelogenesis imperfecta is complicated by genetic interactions. To identify mouse amelogenesis imperfecta-related genes (mAIGenes) and their respective phenotypes, we conducted a systematic literature review and database search and found and curated 70 mAIGenes across all of the databases. Our pathway enrichment analysis indicated that these genes were enriched in tooth development-associated pathways, forming four distinct groups. To explore how these genes are regulated and affect the phenotype, we predicted microRNA (miRNA)-gene interaction pairs using our bioinformatics pipeline. Our miRNA regulatory network analysis pinpointed that miR-16-5p, miR-27b-3p, and miR-23a/b-3p were hub miRNAs. The function of these hub miRNAs was evaluated through ameloblast differentiation assays with/without the candidate miRNA mimics using cultured mouse ameloblast cells. Our results revealed that overexpression of miR-16-5p and miR-27b-3p, but not miR-23a/b-3p, significantly inhibited ameloblast differentiation through regulation of mAIGenes. Thus, our study shows that miR-16-5p and miR-27b-3p are candidate pathogenic miRNAs for amelogenesis imperfecta.

19.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420127

RESUMEN

The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.


Asunto(s)
Labio Leporino , Fisura del Paladar , MicroARNs , Animales , Proliferación Celular/genética , Labio Leporino/inducido químicamente , Labio Leporino/genética , Labio Leporino/patología , Fisura del Paladar/inducido químicamente , Fisura del Paladar/genética , Fisura del Paladar/patología , Ratones , MicroARNs/metabolismo , Tretinoina/farmacología
20.
Acta Radiol Open ; 11(2): 20584601221077074, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35273810

RESUMEN

On conventional magnetic resonance imaging (MRI), hemangioblastomas typically appear as mural nodules with an adjacent surrounding cyst or a solid mass in the cerebellum. However, hemangioblastomas sometimes cannot be reliably distinguished using this imaging technique from other tumors, especially pilocytic astrocytomas and metastatic tumors, because of their similar imaging findings and locations. Herein, we report three cases of cerebellar hemangioblastomas and review their findings on conventional and advanced MRI, including diffusion-weighted imaging (DWI), dynamic susceptibility-weighted contrast-enhanced perfusion-weighted imaging (DSC-PWI), and magnetic resonance spectroscopy (MRS). Solid contrast-enhanced lesions of hemangioblastomas showed increased apparent diffusion coefficient values on DWI, increased relative cerebral blood volume ratio on DSC-PWI, and high lipid/lactate peak on MRS. Therefore, advanced MRI techniques can be helpful in understanding the pathological and metabolic changes of hemangioblastomas and may be useful for their characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA