Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Radiat Res ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278649

RESUMEN

In proton craniospinal irradiation (CSI) for skeletally immature pediatric patients, a treatment plan should be developed to ensure that the dose is uniformly delivered to all vertebrae, considering the effects on bone growth balance. The technical (t) clinical target volume (CTV) is conventionally set by manually expanding the CTV from the entire intracranial space and thecal sac, based on the physician's experience. However, there are differences in contouring methods among physicians. Therefore, we aimed to propose a new geometric target margin strategy. Nine pediatric patients with medulloblastoma who underwent proton CSI were enrolled. We measured the following water equivalent lengths for each vertebra in each patient: body surface to the dorsal spinal canal, vertebral limbus, ventral spinal canal and spinous processes. A simulated tCTV (stCTV) was created by assigning geometric margins to the spinal canal using the measurement results such that the vertebral limb and dose distribution coincided with a margin assigned to account for the uncertainty of the proton beam range. The stCTV with a growth factor (correlation between body surface area and age) and tCTV were compared and evaluated. The median values of each index for cervical, thoracic and lumber spine were: the Hausdorff distance, 9.14, 9.84 and 9.77 mm; mean distance-to-agreement, 3.26, 2.65 and 2.64 mm; Dice coefficient, 0.84, 0.81 and 0.82 and Jaccard coefficient, 0.50, 0.60 and 0.62, respectively. The geometric target margin setting method used in this study was useful for creating an stCTV to ensure consistent and uniform planning.

2.
Neurosurg Rev ; 47(1): 200, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722409

RESUMEN

Appropriate needle manipulation to avoid abrupt deformation of fragile vessels is a critical determinant of the success of microvascular anastomosis. However, no study has yet evaluated the area changes in surgical objects using surgical videos. The present study therefore aimed to develop a deep learning-based semantic segmentation algorithm to assess the area change of vessels during microvascular anastomosis for objective surgical skill assessment with regard to the "respect for tissue." The semantic segmentation algorithm was trained based on a ResNet-50 network using microvascular end-to-side anastomosis training videos with artificial blood vessels. Using the created model, video parameters during a single stitch completion task, including the coefficient of variation of vessel area (CV-VA), relative change in vessel area per unit time (ΔVA), and the number of tissue deformation errors (TDE), as defined by a ΔVA threshold, were compared between expert and novice surgeons. A high validation accuracy (99.1%) and Intersection over Union (0.93) were obtained for the auto-segmentation model. During the single-stitch task, the expert surgeons displayed lower values of CV-VA (p < 0.05) and ΔVA (p < 0.05). Additionally, experts committed significantly fewer TDEs than novices (p < 0.05), and completed the task in a shorter time (p < 0.01). Receiver operating curve analyses indicated relatively strong discriminative capabilities for each video parameter and task completion time, while the combined use of the task completion time and video parameters demonstrated complete discriminative power between experts and novices. In conclusion, the assessment of changes in the vessel area during microvascular anastomosis using a deep learning-based semantic segmentation algorithm is presented as a novel concept for evaluating microsurgical performance. This will be useful in future computer-aided devices to enhance surgical education and patient safety.


Asunto(s)
Algoritmos , Anastomosis Quirúrgica , Aprendizaje Profundo , Humanos , Anastomosis Quirúrgica/métodos , Proyectos Piloto , Microcirugia/métodos , Microcirugia/educación , Agujas , Competencia Clínica , Semántica , Procedimientos Quirúrgicos Vasculares/métodos , Procedimientos Quirúrgicos Vasculares/educación
3.
Echocardiography ; 41(4): e15812, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634241

RESUMEN

BACKGROUND: Precapillary pulmonary hypertension (PH) is characterized by a sustained increase in right ventricular (RV) afterload, impairing systolic function. Two-dimensional (2D) echocardiography is the most performed cardiac imaging tool to assess RV systolic function; however, an accurate evaluation requires expertise. We aimed to develop a fully automated deep learning (DL)-based tool to estimate the RV ejection fraction (RVEF) from 2D echocardiographic videos of apical four-chamber views in patients with precapillary PH. METHODS: We identified 85 patients with suspected precapillary PH who underwent cardiac magnetic resonance imaging (MRI) and echocardiography. The data was divided into training (80%) and testing (20%) datasets, and a regression model was constructed using 3D-ResNet50. Accuracy was assessed using five-fold cross validation. RESULTS: The DL model predicted the cardiac MRI-derived RVEF with a mean absolute error of 7.67%. The DL model identified severe RV systolic dysfunction (defined as cardiac MRI-derived RVEF < 37%) with an area under the curve (AUC) of .84, which was comparable to the AUC of RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE) measured by experienced sonographers (.87 and .72, respectively). To detect mild RV systolic dysfunction (defined as RVEF ≤ 45%), the AUC from the DL-predicted RVEF also demonstrated a high discriminatory power of .87, comparable to that of FAC (.90), and significantly higher than that of TAPSE (.67). CONCLUSION: The fully automated DL-based tool using 2D echocardiography could accurately estimate RVEF and exhibited a diagnostic performance for RV systolic dysfunction comparable to that of human readers.


Asunto(s)
Aprendizaje Profundo , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Humanos , Volumen Sistólico , Función Ventricular Derecha , Ecocardiografía/métodos
4.
J Radiat Res ; 65(3): 369-378, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38499489

RESUMEN

This retrospective treatment-planning study was conducted to determine whether intensity-modulated proton therapy with robust optimization (ro-IMPT) reduces the risk of acute hematologic toxicity (H-T) and acute and late gastrointestinal toxicity (GI-T) in postoperative whole pelvic radiotherapy for gynecologic malignancies when compared with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated X-ray (IMXT) and single-field optimization proton beam (SFO-PBT) therapies. All plans were created for 13 gynecologic-malignancy patients. The prescribed dose was 45 GyE in 25 fractions for 95% planning target volume in 3D-CRT, IMXT and SFO-PBT plans and for 99% clinical target volume (CTV) in ro-IMPT plans. The normal tissue complication probability (NTCP) of each toxicity was used as an in silico surrogate marker. Median estimated NTCP values for acute H-T and acute and late GI-T were 0.20, 0.94 and 0.58 × 10-1 in 3D-CRT; 0.19, 0.65 and 0.24 × 10-1 in IMXT; 0.04, 0.74 and 0.19 × 10-1 in SFO-PBT; and 0.06, 0.66 and 0.15 × 10-1 in ro-IMPT, respectively. Compared with 3D-CRT and IMXT plans, the ro-IMPT plan demonstrated significant reduction in acute H-T and late GI-T. The risk of acute GI-T in ro-IMPT plan is equivalent with IMXT plan. The ro-IMPT plan demonstrated potential clinical benefits for reducing the risk of acute H-T and late GI-T in the treatment of gynecologic malignances by reducing the dose to the bone marrow and bowel bag while maintaining adequate dose coverage to the CTV. Our results indicated that ro-IMPT may reduce acute H-T and late GI-T risk with potentially improving outcomes for postoperative gynecologic-malignancy patients with concurrent chemotherapy.


Asunto(s)
Neoplasias de los Genitales Femeninos , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Femenino , Neoplasias de los Genitales Femeninos/radioterapia , Radioterapia de Intensidad Modulada/efectos adversos , Terapia de Protones/efectos adversos , Pelvis/efectos de la radiación , Traumatismos por Radiación/etiología , Traumatismos por Radiación/prevención & control , Probabilidad , Tracto Gastrointestinal/efectos de la radiación , Persona de Mediana Edad , Periodo Posoperatorio , Órganos en Riesgo/efectos de la radiación , Anciano , Dosificación Radioterapéutica , Estudios Retrospectivos , Adulto
5.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514888

RESUMEN

Cardiac function indices must be calculated using tracing from short-axis images in cine-MRI. A 3D-CNN (convolutional neural network) that adds time series information to images can estimate cardiac function indices without tracing using images with known values and cardiac cycles as the input. Since the short-axis image depicts the left and right ventricles, it is unclear which motion feature is captured. This study aims to estimate the indices by learning the short-axis images and the known left and right ventricular ejection fractions and to confirm the accuracy and whether each index is captured as a feature. A total of 100 patients with publicly available short-axis cine images were used. The dataset was divided into training:test = 8:2, and a regression model was built by training with the 3D-ResNet50. Accuracy was assessed using a five-fold cross-validation. The correlation coefficient, MAE (mean absolute error), and RMSE (root mean squared error) were determined as indices of accuracy evaluation. The mean correlation coefficient of the left ventricular ejection fraction was 0.80, MAE was 9.41, and RMSE was 12.26. The mean correlation coefficient of the right ventricular ejection fraction was 0.56, MAE was 11.35, and RMSE was 14.95. The correlation coefficient was considerably higher for the left ventricular ejection fraction. Regression modeling using the 3D-CNN indicated that the left ventricular ejection fraction was estimated more accurately, and left ventricular systolic function was captured as a feature.


Asunto(s)
Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Volumen Sistólico , Imagen por Resonancia Cinemagnética/métodos , Corazón
6.
J Appl Clin Med Phys ; 24(6): e13978, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37021382

RESUMEN

PURPOSE: Given the potential risk of motion artifacts, acquisition time reduction is desirable in pediatric 99m Tc-dimercaptosuccinic acid (DMSA) scintigraphy. The aim of this study was to evaluate the performance of predicted full-acquisition-time images from short-acquisition-time pediatric 99m Tc-DMSA planar images with only 1/5th acquisition time using deep learning in terms of image quality and quantitative renal uptake measurement accuracy. METHODS: One hundred and fifty-five cases that underwent pediatric 99m Tc-DMSA planar imaging as dynamic data for 10 min were retrospectively collected for the development of three deep learning models (DnCNN, Win5RB, and ResUnet), and the generation of full-time images from short-time images. We used the normalized mean squared error (NMSE), peak signal-to-noise ratio (PSNR), and structural similarity index metrics (SSIM) to evaluate the accuracy of the predicted full-time images. In addition, the renal uptake of 99m Tc-DMSA was calculated, and the difference in renal uptake from the reference full-time images was assessed using scatter plots with Pearson correlation and Bland-Altman plots. RESULTS: The predicted full-time images from the deep learning models showed a significant improvement in image quality compared to the short-time images with respect to the reference full-time images. In particular, the predicted full-time images obtained by ResUnet showed the lowest NMSE (0.4 [0.4-0.5] %) and the highest PSNR (55.4 [54.7-56.1] dB) and SSIM (0.997 [0.995-0.997]). For renal uptake, an extremely high correlation was achieved in all short-time and three predicted full-time images (R2  > 0.999 for all). The Bland-Altman plots showed the lowest bias (-0.10) of renal uptake in ResUnet, while short-time images showed the lowest variance (95% confidence interval: -0.14, 0.45) of renal uptake. CONCLUSIONS: Our proposed method is capable of producing images that are comparable to the original full-acquisition-time images, allowing for a reduction of acquisition time/injected dose in pediatric 99m Tc-DMSA planar imaging.


Asunto(s)
Aprendizaje Profundo , Ácido Dimercaptosuccínico de Tecnecio Tc 99m , Niño , Humanos , Estudios Retrospectivos , Cintigrafía , Riñón/diagnóstico por imagen , Radiofármacos
7.
PLoS One ; 18(1): e0280076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36607999

RESUMEN

In urethra-sparing radiation therapy, prostatic urinary tract visualization is important in decreasing the urinary side effect. A methodology has been developed to visualize the prostatic urinary tract using post-urination magnetic resonance imaging (PU-MRI) without a urethral catheter. This study investigated whether the combination of PU-MRI and super-resolution (SR) deep learning models improves the visibility of the prostatic urinary tract. We enrolled 30 patients who had previously undergone real-time-image-gated spot scanning proton therapy by insertion of fiducial markers. PU-MRI was performed using a non-contrast high-resolution two-dimensional T2-weighted turbo spin-echo imaging sequence. Four different SR deep learning models were used: the enhanced deep SR network (EDSR), widely activated SR network (WDSR), SR generative adversarial network (SRGAN), and residual dense network (RDN). The complex wavelet structural similarity index measure (CW-SSIM) was used to quantitatively assess the performance of the proposed SR images compared to PU-MRI. Two radiation oncologists used a 1-to-5 scale to subjectively evaluate the visibility of the prostatic urinary tract. Cohen's weighted kappa (k) was used as a measure of agreement of inter-operator reliability. The mean CW-SSIM in EDSR, WDSR, SRGAN, and RDN was 99.86%, 99.89%, 99.30%, and 99.67%, respectively. The mean prostatic urinary tract visibility scores of the radiation oncologists were 3.70 and 3.53 for PU-MRI (k = 0.93), 3.67 and 2.70 for EDSR (k = 0.89), 3.70 and 2.73 for WDSR (k = 0.88), 3.67 and 2.73 for SRGAN (k = 0.88), and 4.37 and 3.73 for RDN (k = 0.93), respectively. The results suggest that SR images using RDN are similar to the original images, and the SR deep learning models subjectively improve the visibility of the prostatic urinary tract.


Asunto(s)
Aprendizaje Profundo , Masculino , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Próstata/diagnóstico por imagen , Uretra , Procesamiento de Imagen Asistido por Computador/métodos
8.
Animals (Basel) ; 12(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230230

RESUMEN

This study investigated the clinical efficacy of abdominal ultrasonography for abomasal dilation in three calves, intestinal volvulus in five calves, intussusception in one calf, and internal hernia in one calf. In the abdominal ultrasonograms of the abomasal dilation cases, this disease was commonly characterized by severely extended lumens, including heterogeneously hyperechoic ingesta without intraluminal accumulations of gas. In the animals with intestinal volvulus and intussusception, a to-and-fro flow was observed to be a common ultrasonographic characteristic that led to suspicion of an intestinal obstruction. The use of abdominal ultrasonography for five cases with intestinal volvulus gave no reason to suspect this disease, despite its efficacy in one case, based on an acutely angled narrowing. Although three of five animals with intestinal volvulus had intestinal ruptures, no ultrasonographic evidence could be obtained. When abdominal ultrasonography was used for one case with intussusception, this pathological condition could be strongly suspected, as a "target" sign was observed. This finding supported surgical intervention for this case, followed by treatment with manual reduction, resulting in a favorable outcome. In terms of the differential and definitive diagnosis for various intestinal diseases, abdominal ultrasonography may be poor at providing indicative evidence, but very helpful for confirming intestinal obstruction.

9.
Diagnostics (Basel) ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453920

RESUMEN

In positron emission tomography (PET) imaging, image quality correlates with the injected [18F]-fluorodeoxyglucose (FDG) dose and acquisition time. If image quality improves from short-acquisition PET images via the super-resolution (SR) deep learning technique, it is possible to reduce the injected FDG dose. Therefore, the aim of this study was to clarify whether the SR deep learning technique could improve the image quality of the 50%-acquisition-time image to the level of that of the 100%-acquisition-time image. One-hundred-and-eight adult patients were enrolled in this retrospective observational study. The supervised data were divided into nine subsets for nested cross-validation. The mean peak signal-to-noise ratio and structural similarity in the SR-PET image were 31.3 dB and 0.931, respectively. The mean opinion scores of the 50% PET image, SR-PET image, and 100% PET image were 3.41, 3.96, and 4.23 for the lung level, 3.31, 3.80, and 4.27 for the liver level, and 3.08, 3.67, and 3.94 for the bowel level, respectively. Thus, the SR-PET image was more similar to the 100% PET image and subjectively improved the image quality, as compared to the 50% PET image. The use of the SR deep-learning technique can reduce the injected FDG dose and thus lower radiation exposure.

10.
J Appl Clin Med Phys ; 23(4): e13531, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35045211

RESUMEN

PURPOSE: To evaluate the dosimetric advantages of daily adaptive radiotherapy (DART) in intensity-modulated proton therapy (IMPT) for high-risk prostate cancer by comparing estimated doses of the conventional non-adaptive radiotherapy (NART) that irradiates according to an original treatment plan through the entire treatment and the DART that uses an adaptive treatment plan generated by using daily CT images acquired before each treatment. METHODS: Twenty-three patients with prostate cancer were included. A treatment plan with 63 Gy (relative biological effectiveness (RBE)) in 21 fractions was generated using treatment planning computed tomography (CT) images assuming that all patients had high-risk prostate cancer for which the clinical target volume (CTV) needs to include prostate and the seminal vesicle (SV) in our treatment protocol. Twenty-one adaptive treatment plans for each patient (total 483 data sets) were generated using daily CT images, and dose distributions were calculated. Using a 3 mm set-up uncertainty in the robust optimization, the doses to the CTV, prostate, SV, rectum, and bladder were compared. RESULTS: Estimated accumulated doses of NART and DART in the 23 patients were 60.81 ± 3.47 Gy (RBE) and 63.24 ± 1.04 Gy (RBE) for CTV D99 (p < 0.01), 62.99 ± 1.28 Gy (RBE) and 63.43 ± 1.33 Gy (RBE) for the prostate D99 (p = 0.2529), and 59.07 ± 5.19 Gy (RBE) and 63.17 ± 1.04 Gy (RBE) for SV D99 (p < 0.001). No significant differences were observed between NART and DART in the estimated accumulated dose for the rectum and bladder. CONCLUSION: Compared with the NART, DART was shown to be a useful approach that can maintain the dose coverage to the target without increasing the dose to the organs at risk (OAR) using the 3 mm set-up uncertainty in the robust optimization in patients with high-risk prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
11.
Phys Imaging Radiat Oncol ; 20: 23-29, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34693040

RESUMEN

BACKGROUND AND PURPOSE: Urethra-sparing radiation therapy for localized prostate cancer can reduce the risk of radiation-induced genitourinary toxicity by intentionally underdosing the periurethral transitional zone. We aimed to compare the clinical impact of a urethra-sparing intensity-modulated proton therapy (US-IMPT) plan with that of conventional clinical plans without urethral dose reduction. MATERIALS AND METHODS: This study included 13 patients who had undergone proton beam therapy. The prescribed dose was 63 GyE in 21 fractions for 99% of the clinical target volume. To compare the clinical impact of the US-IMPT plan with that of the conventional clinical plan, tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with a generalized equivalent uniform dose-based Lyman-Kutcher model using dose volume histograms. The endpoints of these model parameters for the rectum, bladder, and urethra were fistula, contraction, and urethral stricture, respectively. RESULTS: The mean NTCP value for the urethra in US-IMPT was significantly lower than that in the conventional clinical plan (0.6% vs. 1.2%, p < 0.05). There were no statistically significant differences between the conventional and US-IMPT plans regarding the mean minimum dose for the urethra with a 3-mm margin, TCP value, and NTCP value for the rectum and bladder. Additionally, the target dose coverage of all plans in the robustness analysis was within the clinically acceptable range. CONCLUSIONS: Compared with the conventional clinically applied plans, US-IMPT plans have potential clinical advantages and may reduce the risk of genitourinary toxicities, while maintaining the same TCP and NTCP in the rectum and bladder.

12.
J Radiat Res ; 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34590123

RESUMEN

Compared to conventional X-ray therapy, proton beam therapy (PBT) has more clinical and physical advantages such as irradiation dose reduction to normal tissues for pediatric medulloblastoma. However, PBT is expensive. We aimed to compare the cost-effectiveness of PBT for pediatric medulloblastoma with that of conventional X-ray therapy, while focusing on radiation-induced secondary cancers, which are rare, serious and negatively affect a patient's quality of life (QOL). Based on a systematic review, a decision tree model was used for the cost-effectiveness analysis. This analysis was performed from the perspective of health care payers; the cost was estimated from medical fees. The target population was pediatric patients with medulloblastoma below 14 years old. The time horizon was set at 7.7 years after medulloblastoma treatment. The primary outcome was the incremental cost-effectiveness ratio (ICER), which was defined as the ratio of the difference in cost and lifetime attributable risk (LAR) between conventional X-ray therapy and PBT. The discount rate was set at 2% annually. Sensitivity analyses were performed to model uncertainty. Cost and LAR in conventional X-ray therapy and PBT were Japanese yen (JPY) 1 067 608 and JPY 2436061 and 42% and 7%, respectively. The ICER was JPY 3856398/LAR. In conclusion, PBT is more cost-effective than conventional X-ray therapy in reducing the risk of radiation-induced secondary cancers in pediatric medulloblastoma. Thus, our constructed ICER using LAR is one of the valid indicators for cost-effectiveness analysis in radiation-induced secondary cancer.

13.
J Vet Med Sci ; 83(11): 1648-1652, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34526414

RESUMEN

The aim of this study was to evaluate the impacts of ophthalmic findings obtained from both macroscopic examination and ocular ultrasonography when diagnosing bovine endophthalmitis. A newborn crossbreed (Japanese black and Holstein breeds) calf was suspected of visual impairment and central nervous system (CNS) symptoms, such as decreased activity and weak drinking performance. This calf was found to display macroscopic signs, such as clouded lens, convergent strabismus, and horizontal nystagmus, in both eyes. On ocular ultrasonography of both eyes, a V-shaped, thickened, hyperechoic structure was present in the anechoic vitreous humors, indicating retinal detachment. The animal died 4 days after the examination. Sepsis was evident in this case, as Escherichia coli was isolated from multiple organs. The autopsy and histological examination revealed meningitis, encephalitis, and secondary hydrocephalus in the CNS, and endophthalmitis and retinal detachment in both eyes. In this case, the ophthalmic findings did not provide definitive evidence for a diagnosis of endophthalmitis. However, this study indicated that retinal detachment might be an ultrasonographic finding that is suggestive of bovine endophthalmitis.


Asunto(s)
Enfermedades de los Bovinos , Endoftalmitis , Infecciones Bacterianas del Ojo , Meningitis , Desprendimiento de Retina , Animales , Bovinos , Enfermedades de los Bovinos/diagnóstico por imagen , Endoftalmitis/veterinaria , Infecciones Bacterianas del Ojo/veterinaria , Meningitis/veterinaria , Desprendimiento de Retina/veterinaria , Cuerpo Vítreo
14.
Phys Med Biol ; 66(18)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433146

RESUMEN

Increasing numbers of proton imaging research studies are being conducted for accurate proton range determination in proton therapy treatment planning. However, there is no proton imaging system that deals with motion artifacts. In this study, a gated proton imaging system was developed and the first experimental results of proton radiography (pRG) were obtained for a moving object without motion artifacts. A motion management system using dual x-ray fluoroscopy for detecting a spherical gold fiducial marker was introduced and the proton beam was gated in accordance with the motion of the object. To demonstrate the performance of the gated proton imaging system, gated pRG images of a moving phantom were acquired experimentally, and the motion artifacts clearly were diminished. Also, the factors causing image deteriorations were evaluated focusing on the new gating system developed here, and the main factor was identified as the latency (with a maximum value of 93 ms) between the ideal gating signal according to the actual marker position and the actual gating signal. The possible deterioration due to the latency of the proton imaging system and proton beam irradiation was small owing to appropriate setting of the time structure.


Asunto(s)
Marcadores Fiduciales , Terapia de Protones , Fluoroscopía , Fantasmas de Imagen , Protones , Rayos X
15.
Phys Imaging Radiat Oncol ; 18: 1-4, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34258400

RESUMEN

The urethra position may shift due to the presence/absence of the catheter. Our proposed post-urination-magnetic resonance imaging (PU-MRI) technique is possible to identify the urethra without catheter. We aimed to verify the inter-operator difference in contouring the urethra by PU-MRI. The mean values of the evaluation indices of dice similarity coefficient, mean slice-wise Hausdorff distance, and center coordinates were 0.93, 0.17 mm, and 0.36 mm for computed tomography, and 0.75, 0.44 mm, and 1.00 mm for PU-MRI. Therefore, PU-MRI might be useful for identifying the prostatic urinary tract without using a urethral catheter. Clinical trial registration: Hokkaido University Hospital for Clinical Research (018-0221).

16.
PLoS One ; 16(3): e0249010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780512

RESUMEN

Tracheal suctioning is an important procedure to maintain airway patency by removing secretions. Today, suctioning operators include not only medical staff, but also family caregivers. The use of a simulation system has been noted to be the most effective way to learn the tracheal suctioning technique for operators. While the size of the trachea varies across different age groups, the artificial trachea model in the simulation system has only one fixed model. Thus, this study aimed to construct multiple removable trachea models according to different age groups. We enrolled 20 patients who had previously received proton beam therapy in our institution and acquired the treatment planning computed tomography (CT) image data. To construct the artificial trachea model for three age groups (children, adolescents and young adults, and adults), we analyzed the three-dimensional coordinates of the entire trachea, tracheal carina, and the end of the main bronchus. We also analyzed the diameter of the trachea and main bronchus. Finally, we evaluated the accuracy of the model by analyzing the difference between the constructed model and actual measurements. The trachea model was 8 cm long for children and 12 cm for adolescents and young adults, and for adults. The angle between the trachea and bed was about 20 degrees, regardless of age. The mean model accuracy was less than 0.4 cm. We constructed detachable artificial trachea models for three age groups for implementation in the endotracheal suctioning training environment simulator (ESTE-SIM) based on the treatment planning CT image. Our constructed artificial trachea models will be able to provide a simulation environment for various age groups in the ESTE-SIM.


Asunto(s)
Órganos Artificiales , Simulación por Computador , Tráquea/fisiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Planificación de Atención al Paciente , Succión , Tomografía Computarizada por Rayos X , Tráquea/diagnóstico por imagen , Adulto Joven
17.
BJR Open ; 3(1): 20210064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35707757

RESUMEN

Objectives: The purpose of this study is to investigate whether verbal instructions are sufficient for bladder volume (BV) control not to deteriorate prostate position reproducibility in image-guided spot scanning proton therapy (SSPT) for localized prostate cancer. Methods: A total of 268 treatment sessions in 12 consecutive prostate cancer patients who were treated with image-guided SSPT with fiducial markers were retrospectively analyzed. In addition to strict rectal volume control procedures, simple verbal instructions to void urine one hour before the treatment were used here. The BV was measured by a Bladder Scan just before the treatment, and the prostate motion was measured by intraprostatic fiducial markers and two sets of X-ray fluoroscopy images. The correlation between the BV change and prostate motion was assessed by linear mixed-effects models and systematic and random errors according to the reproducibility of the BV. Results: The mean absolute BV change during treatment was from -98.7 to 86.3 ml (median 7.1 ml). The mean absolute prostate motion of the patients in the left-right direction was -1.46 to 1.85 mm; in the cranial-caudal direction it was -6.10 to 3.65 mm, and in the anteroposterior direction -1.90 to 5.23 mm. There was no significant relationship between the BV change and prostate motion during SSPT. The early and late genitourinary and gastrointestinal toxicity was minimal with a minimum follow up of 4.57 years. Conclusions: Simple verbal instructions about urination was suggested to be sufficient to control the BV not to impact on the prostate motion and clinical outcomes in image-guided SSPT. Careful attention to BV change is still needed when the seminal vesicle is to be treated. Advances in knowledge: Our data demonstrated that there was no apparent relationship between BV changes and prostate position reproducibility and simple verbal instruction about urination could be sufficient for image-guided SSPT.

18.
J Appl Clin Med Phys ; 22(1): 174-183, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33338323

RESUMEN

PURPOSE: To investigate potential advantages of adaptive intensity-modulated proton beam therapy (A-IMPT) by comparing it to adaptive intensity-modulated X-ray therapy (A-IMXT) for nasopharyngeal carcinomas (NPC). METHODS: Ten patients with NPC treated with A-IMXT (step and shoot approach) and concomitant chemotherapy between 2014 and 2016 were selected. In the actual treatment, 46 Gy in 23 fractions (46Gy/23Fx.) was prescribed using the initial plan and 24Gy/12Fx was prescribed using an adapted plan thereafter. New treatment planning of A-IMPT was made for the same patients using equivalent dose fractionation schedule and dose constraints. The dose volume statistics based on deformable images and dose accumulation was used in the comparison of A-IMXT with A-IMPT. RESULTS: The means of the Dmean of the right parotid gland (P < 0.001), right TM joint (P < 0.001), left TM joint (P < 0.001), oral cavity (P < 0.001), supraglottic larynx (P = 0.001), glottic larynx (P < 0.001), , middle PCM (P = 0.0371), interior PCM (P < 0.001), cricopharyngeal muscle (P = 0.03643), and thyroid gland (P = 0.00216), in A-IMPT are lower than those of A-IMXT, with statistical significance. The means of, D0.03cc , and Dmean of each sub portion of auditory apparatus and D30% for Eustachian tube and D0.5cc for mastoid volume in A-IMPT are significantly lower than those of A-IMXT. The mean doses to the oral cavity, supraglottic larynx, and glottic larynx were all reduced by more than 20 Gy (RBE = 1.1). CONCLUSIONS: An adaptive approach is suggested to enhance the potential benefit of IMPT compared to IMXT to reduce adverse effects for patients with NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
19.
Phys Med Biol ; 65(23): 235046, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33336651

RESUMEN

To achieve an accurate stopping power ratio (SPR) prediction in particle therapy treatment planning, we previously proposed a simple conversion to the SPR from dual-energy (DE) computed tomography (CT) data via electron density and effective atomic number (Z eff) calibration (DEEDZ-SPR). This study was conducted to carry out an initial implementation of the DEEDZ-SPR conversion method with a clinical treatment planning system (TPS; VQA, Hitachi Ltd., Tokyo) for proton beam therapy. Consequently, this paper presents a proton therapy plan for an anthropomorphic phantom to evaluate the stability of the dose calculations obtained by the DEEDZ-SPR conversion against the variation of the calibration phantom size. Dual-energy x-ray CT images were acquired using a dual-source CT (DSCT) scanner. A single-energy CT (SECT) scan using the same DSCT scanner was also performed to compare the DEEDZ-SPR conversion with the SECT-based SPR (SECT-SPR) conversion. The scanner-specific parameters necessary for the SPR calibration were obtained from the CT images of tissue substitutes in a calibration phantom. Two calibration phantoms with different sizes (a 33 cm diameter phantom and an 18 cm diameter phantom) were used for the SPR calibrations to investigate the beam-hardening effect on dosimetric uncertainties. Each set of calibrated SPR data was applied to the proton therapy plan designed using the VQA TPS with a pencil beam algorithm for the anthropomorphic phantom. The treatment plans with the SECT-SPR conversion exhibited discrepancies between the dose distributions and the dose-volume histograms (DVHs) of the 33 cm and 18 cm phantom calibrations. In contrast, the corresponding dose distributions and the DVHs obtained using the DEEDZ-SPR conversion method coincided almost perfectly with each other. The DEEDZ-SPR conversion appears to be a promising method for providing proton dose plans that are stable against the size variations of the calibration phantom and the patient.


Asunto(s)
Terapia de Protones , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Algoritmos , Calibración , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica
20.
J Appl Clin Med Phys ; 21(12): 10-19, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33151643

RESUMEN

A synchrotron-based real-time image gated spot-scanning proton beam therapy (RGPT) system with inserted fiducial markers can irradiate a moving tumor with high accuracy. As gated treatments increase the beam delivery time, this study aimed to investigate the frequency of intra-field adjustments corresponding to the baseline shift or drift and the beam delivery efficiency of a synchrotron-based RGPT system. Data from 118 patients corresponding to 127 treatment plans and 2810 sessions between October 2016 and March 2019 were collected. We quantitatively analyzed the proton beam delivery time, the difference between the ideal beam delivery time based on a simulated synchrotron magnetic excitation pattern and the actual treatment beam delivery time, frequency corresponding to the baseline shift or drift, and the gating efficiency of the synchrotron-based RGPT system according to the proton beam delivery machine log data. The mean actual beam delivery time was 7.1 min, and the simulated beam delivery time in an ideal environment with the same treatment plan was 2.9 min. The average difference between the actual and simulated beam delivery time per session was 4.3 min. The average frequency of intra-field adjustments corresponding to baseline shift or drift and beam delivery efficiency were 21.7% and 61.8%, respectively. Based on our clinical experience with a synchrotron-based RGPT system, we determined the frequency corresponding to baseline shift or drift and the beam delivery efficiency using the beam delivery machine log data. To maintain treatment accuracy within ± 2.0 mm, intra-field adjustments corresponding to baseline shift or drift were required in approximately 20% of cases. Further improvements in beam delivery efficiency may be realized by shortening the beam delivery time.


Asunto(s)
Neoplasias , Terapia de Protones , Marcadores Fiduciales , Humanos , Neoplasias/radioterapia , Cintigrafía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA