Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 47137-47149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39106079

RESUMEN

With their low immunogenicity and excellent deliverability, extracellular vesicles (EVs) are promising platforms for drug delivery systems. In this study, hydrophobic molecule loading techniques were developed via an exchange reaction based on supramolecular chemistry without using organic solvents that can induce EV disruption and harmful side effects. To demonstrate the availability of an exchanging reaction to prepare drug-loading EVs, hydrophobic boron cluster carborane (CB) was introduced to EVs (CB@EVs), which is expected as a boron agent for boron neutron capture therapy (BNCT). The exchange reaction enabled the encapsulation of CB to EVs without disrupting their structure and forming aggregates. Single-particle analysis revealed that an exchanging reaction can uniformly introduce cargo molecules to EVs, which is advantageous in formulating pharmaceuticals. The performance of CB@EVs as boron agents for BNCT was demonstrated in vitro and in vivo. Compared to L-BPA, a clinically available boron agent, and CB delivered with liposomes, CB@EV systems exhibited the highest BNCT activity in vitro due to their excellent deliverability of cargo molecules via an endocytosis-independent pathway. The system can deeply penetrate 3D cultured spheroids even in the presence of extracellular matrices. The EV-based system could efficiently accumulate in tumor tissues in tumor xenograft model mice with high selectivity, mainly via the enhanced permeation and retention effect, and the deliverability of cargo molecules to tumor tissues in vivo enhanced the therapeutic benefits of BNCT compared to the L-BPA/fructose complex. All of the features of EVs are also advantageous in establishing anticancer agent delivery platforms.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Vesículas Extracelulares , Terapia por Captura de Neutrón de Boro/métodos , Animales , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ratones , Humanos , Boranos/química , Boro/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Ratones Desnudos , Ratones Endogámicos BALB C
2.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37792507

RESUMEN

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Humanos , Liposomas , Terapia por Captura de Neutrón de Boro/métodos , Boro , Compuestos de Boro , Fructosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA