Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Infect Control ; 51(10): 1145-1150, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36931507

RESUMEN

BACKGROUND: Fluid leakage through the glove-protective clothing interface is an area of concern for many health care personnel, including emergency medical service providers, who may wear coveralls to protect themselves from multiple types of hazards. There is currently no established standard test method to specifically evaluate the barrier performance of the glove-protective clothing interface region for any personal protective equipment ensemble. OBJECTIVE: This study quantifies the fluid leakage at the coverall and glove interface using single and double gloving. METHODS: A robotic arm, which can simulate upper extremity movements of health care personnel, was used to test 5 coverall models and an extended examination glove model in single and double glove conditions. RESULTS: The results show that there was a significant difference in fluid leakage amounts between some of the coverall models and the number of glove layers studied. Findings also highlight that there is a high correlation between basis weight and stiffness of the coverall fabrics and the fluid leakage amounts. CONCLUSIONS: These results underline that coverall constructed from thin and less stiff fabrics can result in lower fluid leakage levels. Also, there was no significant difference in fluid leakage amounts between single and double gloves when tested with each of the coverall models, with the exception of the coveralls with the highest basis weight and stiffness.


Asunto(s)
Equipo de Protección Personal , Ropa de Protección , Humanos , Personal de Salud , Guantes Quirúrgicos
2.
Am J Infect Control ; 49(12): 1481-1487, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34428530

RESUMEN

BACKGROUND: Isolation gowns are recommended to protect healthcare personnel, patients, and visitors from transfer of microorganisms and body fluids in patient isolation situations. Standards provide limited information about barrier performance of isolation gowns for possible exposure scenarios. One of the most vulnerable areas of the personal protective equipment ensemble is considered the glove-gown interface. However, current isolation gown classification standards do not consider the interface regions of the personal protective equipment system while assessing the level of protection. The purpose of this study was to quantitatively evaluate the fluid leakage through the glove-gown interface by simulating exposures and healthcare personnel arm movements in patient care for isolation settings. METHODS: We tested fluid leakage of two examination gloves with different cuff lengths and seven isolation gown models designed with varying levels of barrier resistance and multiple cuff types. RESULTS: Our results demonstrated that leakage through the glove-gown interface depends on multiple factors, including glove cuff length and gown cuff design. Gowns with the thumb loop design provided better protection than the elastic cuff design, and the elastic cuff design provided better protection compared to the knit cuff design for a given AAMI PB70 level. More importantly, a substantial penetration through gown fabrics was observed. CONCLUSIONS: This research identifies a need to develop a standardized method to evaluate leakage at the glove-gown interface to improve worker protection.


Asunto(s)
Líquidos Corporales , Ropa de Protección , Simulación por Computador , Personal de Salud , Humanos , Equipo de Protección Personal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA