Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 9(8): 8384-93, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26173084

RESUMEN

A concave rhombic dodecahedron (RD) gold nanoparticle was synthesized by adding 4-aminothiophenol (4-ATP) during growth from seeds. This shape is enclosed by stabilized facets of various high-indexes, such as (331), (221), and (553). Because it is driven thermodynamically and stabilized by 4-ATP ligands, the concave RD maintains its structure over a few months, even after rigorous electrochemical reactions. We discussed the mechanism of the shape evolution controlled by 4-ATP and found that both the binding energy of Au-S and the aromatic geometry of 4-ATP are major determinants of Au atom deposition during growth. As a possible application, we demonstrated that the concave RD exhibits superior electrocatalytic performance for the selective conversion of CO2 to CO in aqueous solution.

2.
Nanoscale ; 5(21): 10618-22, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24056725

RESUMEN

Topological insulators (TIs) are exotic materials which have topologically protected states on the surface due to strong spin-orbit coupling. However, a lack of ordered growth of TI thin films on amorphous dielectrics and/or insulators presents a challenge for applications of TI-junctions. We report the growth of topological insulator Bi2Se3 thin films on amorphous SiO2 by molecular beam epitaxy (MBE). To achieve the ordered growth of Bi2Se3 on an amorphous surface, the formation of other phases at the interface is suppressed by Se passivation. Structural characterizations reveal that Bi2Se3 films are grown along the [001] direction with a good periodicity by the van der Waals epitaxy mechanism. A weak anti-localization effect of Bi2Se3 films grown on amorphous SiO2 shows a modulated electrical property by the gating response. Our approach for ordered growth of Bi2Se3 on an amorphous dielectric surface presents considerable advantages for TI-junctions with amorphous insulator or dielectric thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA