Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928447

RESUMEN

Exposure to general anesthetics can adversely affect brain development, but there is little study of sedative agents used in intensive care that act via similar pharmacologic mechanisms. Using quantitative immunohistochemistry and neurobehavioral testing and an established protocol for murine sedation, we tested the hypothesis that lengthy, repetitive exposure to midazolam, a commonly used sedative in pediatric intensive care, interferes with neuronal development and subsequent cognitive function via actions on the mechanistic target of rapamycin (mTOR) pathway. We found that mice in the midazolam sedation group exhibited a chronic, significant increase in the expression of mTOR activity pathway markers in comparison to controls. Furthermore, both neurobehavioral outcomes, deficits in Y-maze and fear-conditioning performance, and neuropathologic effects of midazolam sedation exposure, including disrupted dendritic arborization and synaptogenesis, were ameliorated via treatment with rapamycin, a pharmacologic mTOR pathway inhibitor. We conclude that prolonged, repetitive exposure to midazolam sedation interferes with the development of neural circuitry via a pathologic increase in mTOR pathway signaling during brain development that has lasting consequences for both brain structure and function.


Asunto(s)
Midazolam , Transducción de Señal , Serina-Treonina Quinasas TOR , Midazolam/farmacología , Animales , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Hipnóticos y Sedantes/farmacología , Conducta Animal/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Aprendizaje por Laberinto/efectos de los fármacos , Animales Recién Nacidos
2.
PLoS Pathog ; 18(7): e1010697, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816543

RESUMEN

The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.


Asunto(s)
Antiinfecciosos , Criptococosis , Cryptococcus neoformans , Criptococosis/microbiología , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/microbiología , Fagocitosis , Fagosomas/microbiología
3.
J Clin Invest ; 130(7): 3805-3819, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32298242

RESUMEN

Microbial ingestion by a macrophage results in the formation of an acidic phagolysosome but the host cell has no information on the pH susceptibility of the ingested organism. This poses a problem for the macrophage and raises the fundamental question of how the phagocytic cell optimizes the acidification process to prevail. We analyzed the dynamical distribution of phagolysosomal pH in murine and human macrophages that had ingested live or dead Cryptococcus neoformans cells, or inert beads. Phagolysosomal acidification produced a range of pH values that approximated normal distributions, but these differed from normality depending on ingested particle type. Analysis of the increments of pH reduction revealed no forbidden ordinal patterns, implying that the phagosomal acidification process was a stochastic dynamical system. Using simulation modeling, we determined that by stochastically acidifying a phagolysosome to a pH within the observed distribution, macrophages sacrificed a small amount of overall fitness to gain the benefit of reduced variation in fitness. Hence, chance in the final phagosomal pH introduces unpredictability to the outcome of the macrophage-microbe, which implies a bet-hedging strategy that benefits the macrophage. While bet hedging is common in biological systems at the organism level, our results show its use at the organelle and cellular level.


Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Macrófagos/inmunología , Fagosomas/inmunología , Animales , Línea Celular , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA