Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 105(6): 1186-1199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554991

RESUMEN

The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.


Asunto(s)
Linaje de la Célula , Riñón , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Animales , Humanos , Riñón/citología , Diferenciación Celular , Sistemas CRISPR-Cas , Rastreo Celular/métodos , Elementos Transponibles de ADN/genética
3.
Biol Open ; 11(5)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35142342

RESUMEN

The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.


Asunto(s)
Anomalías Craneofaciales , Pez Cebra , Animales , Anomalías Craneofaciales/genética , Etanol/metabolismo , Cara/anomalías
4.
EMBO Mol Med ; 12(10): e12013, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32914578

RESUMEN

A pedigree of subjects presented with frontonasal dysplasia (FND). Genome sequencing and analysis identified a p.L165F missense variant in the homeodomain of the transcription factor ALX1 which was imputed to be pathogenic. Induced pluripotent stem cells (iPSC) were derived from the subjects and differentiated to neural crest cells (NCC). NCC derived from ALX1L165F/L165F iPSC were more sensitive to apoptosis, showed an elevated expression of several neural crest progenitor state markers, and exhibited impaired migration compared to wild-type controls. NCC migration was evaluated in vivo using lineage tracing in a zebrafish model, which revealed defective migration of the anterior NCC stream that contributes to the median portion of the anterior neurocranium, phenocopying the clinical presentation. Analysis of human NCC culture media revealed a change in the level of bone morphogenic proteins (BMP), with a low level of BMP2 and a high level of BMP9. Soluble BMP2 and BMP9 antagonist treatments were able to rescue the defective migration phenotype. Taken together, these results demonstrate a mechanistic requirement of ALX1 in NCC development and migration.


Asunto(s)
Anomalías Craneofaciales , Cresta Neural , Animales , Movimiento Celular , Anomalías Craneofaciales/genética , Cara/anomalías , Humanos , Pez Cebra
5.
Dev Dyn ; 247(4): 650-659, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29243319

RESUMEN

BACKGROUND: Rfx winged-helix transcription factors, best known as key regulators of core ciliogenesis, also play ciliogenesis-independent roles during neural development. Mammalian Rfx4 controls neural tube morphogenesis via both mechanisms. RESULTS: We set out to identify conserved aspects of rfx4 gene function during vertebrate development and to establish a new genetic model in which to analyze these mechanisms further. To this end, we have generated frame-shift alleles in the zebrafish rfx4 locus using CRISPR/Cas9 mutagenesis. Using RNAseq-based transcriptome analysis, in situ hybridization and immunostaining we identified a requirement for zebrafish rfx4 in the forming midlines of the caudal neural tube. These functions are mediated, least in part, through transcriptional regulation of several zic genes in the dorsal hindbrain and of foxa2 in the ventral hindbrain and spinal cord (floor plate). CONCLUSIONS: The midline patterning functions of rfx4 are conserved, because rfx4 regulates transcription of foxa2 and zic2 in zebrafish and in mouse. In contrast, zebrafish rfx4 function is dispensable for forebrain morphogenesis, while mouse rfx4 is required for normal formation of forebrain ventricles in a ciliogenesis-dependent manner. Collectively, this report identifies conserved aspects of rfx4 function and establishes a robust new genetic model for in-depth dissection of these mechanisms. Developmental Dynamics 247:650-659, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Tubo Neural/embriología , Factores de Transcripción del Factor Regulador X/fisiología , Animales , Tipificación del Cuerpo , Morfogénesis , Mutagénesis , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Factores de Transcripción del Factor Regulador X/genética , Pez Cebra
6.
Dev Biol ; 429(1): 92-104, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28689736

RESUMEN

The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.


Asunto(s)
Coroides/embriología , Coroides/metabolismo , Morfogénesis , Cresta Neural/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Coloboma/patología , Cara/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Mutación/genética , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Retina/efectos de los fármacos , Retina/embriología , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Cráneo/embriología , Factores de Transcripción/genética , Alcaloides de Veratrum/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA