Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 47(10): 2482-2485, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561381

RESUMEN

We introduce a novel, to the best of our knowledge, method to increase the bandwidth in holographic displays. Here, multi-angle illumination using multiple laser diodes (LDs) is adopted to expand the limited diffraction angle of the spatial light modulator (SLM). To solve the problem of signal repetitions caused by sharing the same SLM pattern, we use a random binary mask (BM). We demonstrate via simulations and experiments that our method effectively increases the bandwidth with sufficient image quality. Furthermore, the speckle noise, a critical issue of the holographic display that decreases the contrast and is potentially harmful to eyes, is reduced by the advantage of incoherent summation in the reconstruction plane. We believe that this method is a practical approach that can expand the bandwidth of the holographic display by alleviating the bottleneck of hardware limitations.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(2): A86-A92, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200966

RESUMEN

We propose a hologram generation technique to compensate for spatially varying aberrations of holographic displays through machine learning. The image quality of the holographic display is severely degraded when there exist optical aberrations due to misalignment of optical elements or off-axis projection. One of the main advantages of holographic display is that aberrations can be compensated for without additional optical elements. Conventionally, computer-generated holograms for compensation are synthesized through a point-wise integration method, which requires large computational loads. Here, we propose to replace the integration with a combination of fast-Fourier-transform-based convolutions and forward computation of a deep neural network. The point-wise integration method took approximately 95.14 s to generate a hologram of 1024×1024pixels, while the proposed method took about 0.13 s, which corresponds to ×732 computation speed improvement. Furthermore, the aberration compensation by the proposed method is verified through experiments.

3.
Opt Lett ; 47(4): 790-793, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167526

RESUMEN

In this Letter, we introduce a noise reduction (NR) strategy in the off-axis camera-in-the-loop (CITL) optimization for high-quality hologram generation. Our proposal adopts the Gaussian blur in the NR strategy to suppress the high-frequency noise and improve the optimization convergence. A double-hologram generation technique is used to reduce the noise further. The off-axis system's aberrations are eliminated by integrating the aberration compensation method as well. Compared with the original CITL method, the image quality of the proposed method is improved by approximately 5.5 dB in the optical experiment.

4.
IEEE Trans Vis Comput Graph ; 28(2): 1415-1427, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32746283

RESUMEN

A commercial head-mounted display (HMD) for virtual reality (VR) presents three-dimensional imagery with a fixed focal distance. The VR HMD with a fixed focus can cause visual discomfort to an observer. In this article, we propose a novel design of a compact VR HMD supporting near-correct focus cues over a wide depth of field (from 18 cm to optical infinity). The proposed HMD consists of a low-resolution binary backlight, a liquid crystal display panel, and focus-tunable lenses. In the proposed system, the backlight locally illuminates the display panel that is floated by the focus-tunable lens at a specific distance. The illumination moment and the focus-tunable lens' focal power are synchronized to generate focal blocks at the desired distances. The distance of each focal block is determined by depth information of three-dimensional imagery to provide near-correct focus cues. We evaluate the focus cue fidelity of the proposed system considering the fill factor and resolution of the backlight. Finally, we verify the display performance with experimental results.


Asunto(s)
Gafas Inteligentes , Realidad Virtual , Gráficos por Computador , Señales (Psicología)
5.
Opt Lett ; 46(19): 4769-4772, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598195

RESUMEN

In this Letter, we introduce a computer-generated hologram (CGH) optimization technique that can control the randomness of the reconstructed phase. The phase randomness significantly affects the eyebox size and depth of field in holographic near-eye displays. Our proposal is to synthesize the CGH through the sum of two terms computed from the target scene with a random phase. We set a weighting pattern for summation as the optimization variable, which enables the CGH to reflect the random phase during optimization. We evaluate the proposed algorithm on single-depth and multi-depth contents, and the performance is validated via simulations and experiments.

6.
Opt Lett ; 46(17): 4212-4215, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469980

RESUMEN

We introduce a projection-type light field display featuring effective light modulation. By combining a tomographic display with integral imaging (InIm) technology, a novel optical design is capable of an autostereoscopic light field projector. Here, the tomographic approach generates a high-resolution volumetric scene, and InIm makes it possible for the volumetric scene to be reconstructed on a large screen through a projection. Since all the processes are realized optically without digital processing, our system can overcome the performance limitations associated with the number of pixels in the conventional InIm displays. We built a prototype display and demonstrated that our optical design has the potential of massive resolution with a full-parallax in a single device.

7.
Opt Express ; 28(18): 27137-27154, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906972

RESUMEN

We present a deep neural network for generating a multi-depth hologram and its training strategy. The proposed network takes multiple images of different depths as inputs and calculates the complex hologram as an output, which reconstructs each input image at the corresponding depth. We design a structure of the proposed network and develop the dataset compositing method to train the network effectively. The dataset consists of multiple input intensity profiles and their propagated holograms. Rather than simply training random speckle images and their propagated holograms, we generate the training dataset by adjusting the density of the random dots or combining basic shapes to the dataset such as a circle. The proposed dataset composition method improves the quality of reconstructed images by the holograms generated by the network, called deep learning holograms (DLHs). To verify the proposed method, we numerically and optically reconstruct the DLHs. The results confirmed that the DLHs can reconstruct clear images at multiple depths similar to conventional multi-depth computer-generated holograms. To evaluate the performance of the DLH quantitatively, we compute the peak signal-to-noise ratio of the reconstructed images and analyze the reconstructed intensity patterns with various methods.

8.
Opt Express ; 28(16): 23690-23702, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752362

RESUMEN

We propose a new concept of a foveated display with a single display module. A multi-resolution and wide field of view (FOV) can be simultaneously achieved using only a single display, based on temporal polarization-multiplexing. The polarization-dependent lens set functions as an optical window or beam expander system depending on the polarization state, which can provide two operating modes: fovea mode for a high-resolution and peripheral mode for a wide viewing angle. By superimposing two-mode images, the proposed system supports a foveated and wide FOV image without an ultra-high-resolution display. We demonstrate the feasibility of the proposed configuration through the proof-of-concept system.

9.
Opt Lett ; 45(8): 2148-2151, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287178

RESUMEN

We propose a digital micromirror device (DMD) holographic display, where speckleless holograms can be observed in the expanded viewing zone. Structured illumination (SI) is applied to expand the small diffraction angle of the DMD using a laser diode (LD) array. To eliminate diffraction noise from SI, we utilize an active filter array for the Fourier filter and synchronize it with the LD array. The speckle noise is reduced via temporal multiplexing, where the proposed system supports a dynamic video of 60 Hz using the DMD's fast operation property. The proposed system is verified and evaluated with experimental results.

10.
Opt Express ; 27(17): 24362-24381, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510326

RESUMEN

There have been many recent developments in 3D display technology to provide correct accommodation cues over an extended focus range. To this end, those displays rely on scene decomposition algorithms to reproduce accurate occlusion boundaries as well asretinal defocus blur. Recently, tomographic displays have been proposed with improved trade-offs of focus range, spatial resolution, and exit-pupil. The advantage of the system partly stems from a high-speed backlight modulation system based on a digital micromirror device, which only supports 1-bit images. However, its inherent binary constraint hinders achieving the optimal scene decomposition, thus leaving boundary artifacts. In this work, we present a technique for synthesizing optimal imagery of general 3D scenes with occlusion on tomographic displays. Requiring no prior knowledge of the scene geometry, our technique addresses the blending issue via non-convex optimization, inspired by recent studies in discrete tomography. Also, we present a general framework for this rendering algorithm and demonstrate the utility of the technique for volumetric display systems with binary representation.

11.
Nat Commun ; 10(1): 2497, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175279

RESUMEN

The ultimate 3D displays should provide both psychological and physiological cues for depth recognition. However, it has been challenging to satisfy the essential features without making sacrifices in the resolution, frame rate, and eye box. Here, we present a tomographic near-eye display that supports a wide depth of field, quasi-continuous accommodation, omni-directional motion parallax, preserved resolution, full frame, and moderate field of view within a sufficient eye box. The tomographic display consists of focus-tunable optics, a display panel, and a fast spatially adjustable backlight. The synchronization of the focus-tunable optics and the backlight enables the display panel to express the depth information. We implement a benchtop prototype near-eye display, which is the most promising application of tomographic displays. We conclude with a detailed analysis and thorough discussion of the display's optimal volumetric reconstruction. of tomographic displays.


Asunto(s)
Óptica y Fotónica , Realidad Virtual , Acomodación Ocular , Señales (Psicología) , Presentación de Datos , Percepción de Profundidad , Humanos , Tomografía
12.
Sci Rep ; 7(1): 2753, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28584247

RESUMEN

A novel see-through optical device to combine the real world and the virtual image is proposed which is called an index-matched anisotropic crystal lens (IMACL). The convex lens made of anisotropic crystal is enveloped with the isotropic material having same refractive index with the extraordinary refractive index of the anisotropic crystal. This optical device functions as the transparent glass or lens according to the polarization state of the incident light. With the novel optical property, IMACL can be utilized in the see-through near eye display, or head-mounted display for augmented reality. The optical property of the proposed optical device is analyzed and aberration by the anisotropic property of the index-matched anisotropic crystal lens is described with the simulation. The concept of the head-mounted display using IMACL is introduced and various optical performances such as field of view, form factor and transmittance are analyzed. The prototype is implemented to verify the proposed system and experimental results show the mixture between the virtual image and real world scene.

13.
Opt Express ; 24(17): 19531-44, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557230

RESUMEN

We propose three-dimensional (3D) head-mounted display (HMD) providing multi-focal and wearable functions by using polarization-dependent optical path switching in Savart plate. The multi-focal function is implemented as micro display with high pixel density of 1666 pixels per inches is optically duplicated in longitudinal direction according to the polarization state. The combination of micro display, fast switching polarization rotator and Savart plate retains small form factor suitable for wearable function. The optical aberrations of duplicated panels are investigated by ray tracing according to both wavelength and polarization state. Astigmatism and lateral chromatic aberration of extraordinary wave are compensated by modification of the Savart plate and sub-pixel shifting method, respectively. To verify the feasibility of the proposed system, a prototype of the HMD module for monocular eye is implemented. The module has the compact size of 40 mm by 90 mm by 40 mm and the weight of 131 g with wearable function. The micro display and polarization rotator are synchronized in real-time as 30 Hz and two focal planes are formed at 640 and 900 mm away from eye box, respectively. In experiments, the prototype also provides augmented reality function by combining the optically duplicated panels with a beam splitter. The multi-focal function of the optically duplicated panels without astigmatism and color dispersion compensation is verified. When light field optimization for two additive layers is performed, perspective images are observed, and the integration of real world scene and high quality 3D images is confirmed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA