Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3921, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273239

RESUMEN

Spent methanol-to-propylene (MTP) catalysts have a large specific surface area and high porosity but are usually disposed of in landfills directly, and recycling has rarely been reported. In this study, the spent MTP catalyst was moderately dealuminized with organic acids and etched with alkali solvent to increase its specific surface area, further silanized by octyl triethoxy silane (OTS). A novel superhydrophobic adsorbent covered with -Si(CH2)7CH3 groups was obtained. The characterization of XRD, SEM, FTIR and XPS shows that the adsorbent maintains a typical ZSM-5 zeolite structure, and the -Si(CH2)7CH3 group is successfully grafted into the sample, not only on the surface but also in some pore space. Taking high chemical oxygen demand (COD) wastewater as the object, the influence of contract time, pH and temperature on COD removal was investigated. The removal process could be better depicted by the Langmuir isotherm model and the pseudo second-order dynamic model. Furthermore, the results of the thermodynamic study (∆G is - 79.35 kJ/mol, ∆S is 423.68 J/mol K, and ∆H is 46.91 kJ/mol) show that the adsorption was a spontaneous and endothermic process. These findings indicate that the modified spent MTP catalyst has potential application for the removal of COD from wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Alquenos , Análisis de la Demanda Biológica de Oxígeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Metanol , Contaminantes Químicos del Agua/química
2.
Nat Commun ; 13(1): 935, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177629

RESUMEN

Reduction process is a key step to fabricate metal-zeolite catalysts in catalytic synthesis. However, because of the strong interaction force, metal oxides in zeolites are very difficult to be reduced. Existing reduction technologies are always energy-intensive, and inevitably cause the agglomeration of metallic particles in metal-zeolite catalysts or destroy zeolite structure in severe cases. Herein, we disclose that zeolites after ion exchange of ammonium have an interesting and unexpected self-reducing feature. It can accurately control the reduction of metal-zeolite catalysts, via in situ ammonia production from 'ammonia pools', meanwhile, restrains the growth of the size of metals. Such new and reliable ammonia pool effect is not influenced by topological structures of zeolites, and works well on reducible metals. The ammonia pool effect is ultimately attributed to an atmosphere-confined self-regulation mechanism. This methodology will significantly promote the fabrication for metal-zeolite catalysts, and further facilitate design and development of low-cost and high-activity catalysts.

3.
ACS Nano ; 15(8): 13568-13578, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34378905

RESUMEN

Up to now, the member of zeolite family has expanded to more than 230. However, only little part of them have been reported as catalysts used in reactions. Discovering potential zeolites for reactions is significantly important, especially in industrial applications. A carbonylation zeolite catalyst Al-RUB-41 has special morphology and channel orientation. The 8-MR channel of Al-RUB-41 is just perpendicular to its thin sheet, making a very short mass-transfer distance along 8-MR. This specific nature endows Al-RUB-41 with efficient catalytic ability to dimethyl ether carbonylation reaction with beyond 95% methyl acetate selectivity. Compared with the most widely accepted carbonylation zeolite catalysts, Al-RUB-41 behaves a much better catalytic stability than H-MOR and a greatly enhanced catalytic activity than H-ZSM-35. A space-confined deactivation mechanism over Al-RUB-41 is proposed. By erasing the acid sites on outer surface, Al-RUB-41@SiO2 catalyst achieves a long-time and high-efficiency activity without any deactivation trend.

4.
R Soc Open Sci ; 6(9): 190218, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31598280

RESUMEN

Deposition of carbonaceous compounds was used to improve the propylene selectivity of ZSM-5 by deactivating some acid sites meanwhile maintaining the high activity for methanol conversion. The carbonaceous species of pre-coked samples before and after MTP reactions were investigated by elementary analysis and thermogravimetric analysis (TGA). The results showed that pre-coke formed at low temperature (250°C) was unstable and easy to transform into polyaromatics species at the high reacting temperature, while combining 5% pre-coking process with 95% steam treatment at high temperature (480°C) was effective in inhibiting the formation of coke deposits and presented a significant improvement in the propylene selectivity.

5.
J AOAC Int ; 98(1): 225-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25857902

RESUMEN

The content of mononuclear Al (Ala%) changed with its determination time (ta) under different dosages of Ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid, [Ferron]), and the change of Ala% with [Ferron] at different ta was systematically investigated for the first time. Thus, the most appropriate ta was found with the optimal [Ferron]. Also, the judgment of the platform (flat or level portion) of the complete reaction on the absorption-time curve determined in the hydroxyl polyaluminum solution by Ferron timed spectrophotometry (Ferron assay) was first digitized. The time point (tb) of complete reaction between the medium polyaluminum (Alb) and Ferron reagent depended on the reaction extent, and time could not be used only to judge. Thus, the tb was accurately determined and reduced to half of original, which improved the experiment efficiency significantly. The Ferron assay was completely optimized.


Asunto(s)
Aluminio/química , Análisis Espectral/métodos , Factores de Tiempo , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA