Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 851: 1-12, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30768982

RESUMEN

Cisplatin is a widely used chemotherapeutic drug that often causes acute kidney injury (AKI) in cancer patients. The contribution of miRNAs to the cisplatin-induced renal tubular epithelial cell injury remains largely unknown. Here we performed an integrative network analysis of miRNA and mRNA expression profiles to shed light into the underlying mechanism of cisplatin-induced renal tubular epithelial cell injury. Microarray analysis identified 47 differentially expressed miRNAs, among them 26 were upregulated and 21 were downregulated. Moreover, integrating dysregulated miRNAs target prediction and altered mRNA expression enabled us to identify 1181 putative target genes for further bioinformatics analysis. Gene ontology (GO) analysis revealed that the putative target genes were involved in apoptosis process and regulation of transcription. Pathway analysis indicated that the top upregulated pathways included MAPK and p53 signaling pathway, while the top downregulated pathways were PI3K-Akt and Wnt signaling pathway. Further network analysis showed that MAPK signaling pathway and apoptosis with the highest degree were identified as core pathways, hsa-miR-9-3p and hsa-miR-371b-5p as the most critical miRNAs, and CASK, ASH1L, CDK6 etc. as hub target genes. In addition, the expression level change of selected five microRNAs (hsa-miR-4299, hsa-miR-297, hsa-miR-3135b, hsa-miR-9-3p, and hsa-miR-371b-5p) and two mRNAs( CASK and CDK6) were validated in cisplatin-induced HK-2 cells. Furthermore, a similar trend of expression level change was observed in NRK-52E cells by cisplatin treatment. Overall, our results provide the molecular basis and potential targets for the treatment of cisplatin-induced renal tubular cell injury.


Asunto(s)
Cisplatino/farmacología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Túbulos Renales/citología , MicroARNs/genética , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , ARN Mensajero/genética , Transcriptoma/efectos de los fármacos
2.
Oncotarget ; 8(55): 93516-93529, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212169

RESUMEN

CCCTC-binding factor (CTCF) is an important epigenetic regulator implicated in multiple cellular processes, including growth, proliferation, differentiation, and apoptosis. Although CTCF deletion or mutation has been associated with human breast cancer, the role of CTCF in breast cancer is questionable. We investigated the biological functions of CTCF in breast cancer and the underlying mechanism. The results showed that CTCF expression in human breast cancer cells and tissues was significantly lower than that in normal breast cells and tissues. In addition, CTCF expression correlated significantly with cancer stage (P = 0.043) and pathological differentiation (P = 0.029). Furthermore, CTCF overexpression resulted in the inhibition of proliferation, migration, and invasion, while CTCF knockdown induced these processes in breast cancer cells. Transcriptome analysis and further experimental confirmation in MDA-MD-231 cells revealed that forced overexpression of CTCF might attenuate the DNA-binding ability of nuclear factor-kappaB (NF-κB) p65 subunit and inhibit activation of NF-κB and its target pro-oncogenes (tumor necrosis factor alpha-induced protein 3 [TNFAIP3]) and genes for growth-related proteins (early growth response protein 1 [EGR1] and growth arrest and DNA-damage-inducible alpha [GADD45a]). The present study provides a new insight into the tumor suppressor roles of CTCF in breast cancer development and suggests that the CTCF/NF-κB pathway is a potential target for breast cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA