Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicon ; 247: 107829, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38925341

RESUMEN

Naja atra bites often result in immediate and severe illness. The venom of N. atra contains a complex mixture of toxins that can cause significant damage to the patient's skin tissue. If left untreated, this condition can progress to localized necrosis, potentially resulting in impairment or even amputation in severe cases. Despite the known effects of the venom, the exact mechanisms underlying this tissue necrosis are not fully understood. This study aimed to investigate the protein components responsible for tissue necrosis induced by N. atra venom at both the organism-wide and molecular levels. To achieve this, venom was injected into Bama miniature pigs to cause ulcers, and exudate samples were collected at various time points after injection. Label-free proteomics analysis identified 1119, 1016, 938, 864, and 855 proteins in the exudate at 6, 12, 24, 36, and 48 h post-injection, respectively. Further analysis revealed 431 differentially expressed proteins, with S100A8, MMP-2, MIF, and IDH2 identified as proteins associated with local tissue necrosis. In this study, we established a Bama miniature pig model for N. atra venom injection and performed proteomic analysis of the wound exudate, which provides important insights into the molecular pathology of snakebite-induced tissue necrosis and potential theoretical bases for clinical treatment. Proteomic data from this study can be accessed through ProteomeXchange using the identifier PXD052498.


Asunto(s)
Venenos Elapídicos , Necrosis , Proteómica , Animales , Porcinos , Venenos Elapídicos/toxicidad , Necrosis/inducido químicamente , Porcinos Enanos , Naja naja , Mordeduras de Serpientes , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo
2.
Heliyon ; 10(8): e29426, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638995

RESUMEN

Background: The use of proton pump inhibitors in the acute phase of cerebral infarction may lead to adverse long-term outcomes, this study aims to explore the potential of electroacupuncture (EA) in replacing omeprazole in exerting post-stroke gastrointestinal protection. Methods: A permanent middle cerebral artery infarction model was established using the modified Longa thread occlusion technique. Gastrointestinal motility, gastrointestinal mucosal damage, cerebral infarct volume, and alterations in choline acetyltransferase (ChAT)-positive neurons within the dorsal motor nucleus of the vagus nerve (DMV) were assessed after 7 days of EA at Zusanli (ST36) or omeprazole intervention. To evaluate the role of the vagal nerve in mitigating post-stroke gastrointestinal dysfunction, we employed subdiaphragmatic vagotomy and the ChAT-specific inhibitor α-NETA. Additionally, we utilized methyllycaconitine (MLA), a selective inhibitor of the α7-type nicotinic acetylcholine receptor (α7nAChR), and PNU282987, an agonist, to identify the target of EA. Results: EA restored ChAT neurons lost in the DMV, activated the vagus nerve and conferred cerebroprotection while ameliorating gastrointestinal mucosal injury and gastrointestinal motility disorders. In addition, following the administration of the α7nAChR antagonist, the attenuation of gastric mucosal injury and inflammatory factors induced by EA was hindered, although gastrointestinal motility still exhibited improvement. Conclusion: EA at ST36 promotes the restoration of cholinergic signaling in the DMV of stroke-afflicted rats, and its excitation of the vagal nerve inhibits gastrointestinal inflammation after stroke via α7nAChR, while improvement in gastrointestinal motility could be mediated by other acetylcholine receptors.

3.
J Pain Res ; 17: 609-621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371480

RESUMEN

Purpose: Few studies have assessed the effects of sphingosine kinase 1/sphingosine-1-phosphate (SPHK1/S1P) on microangiogenesis at rat myofascial trigger points (MTrPs) using contrast-enhanced ultrasonography (CEUS). This study aimed to address these deficiencies. Here, we investigated the effects of SPHK1/S1P on MTrP microangiogenesis and the value of CEUS in evaluating these effects. Methods: Forty Sprague‒Dawley rats were subdivided into two groups: control and MTrP groups. MTrPs were established by 8 weeks of the strike procedure combined with eccentric motion and 4 weeks of recovery. All rats were euthanized after having undergone CEUS with an overdose of pentobarbital sodium. MTrP and control tissue samples were removed for haematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM) imaging. The tissue was dehydrated, cleared, and embedded before sectioning. The sections were then incubated overnight at 4°C, and immunohistochemistry was carried out with primary antibodies including rabbit anti-CD31, rabbit anti-SPHK1and rabbit anti-S1PR1. Results: MTrP rats exhibited spontaneous electrical activity (SEA) and a local twitch response (LTR) during electromyography (EMG) examination. The CEUS time-intensity curves (TICs) showed that the perfusion intensity in the MTrPs and surrounding tissue area was increased, with faster perfusion than in normal sites, while the TICs in the control group slowly increased and then slowly decreased. The correlation coefficient between the microvessel density (MVD) and sphingosine 1-phosphate receptor 1 (S1PR1) was 0.716 (p <0.01). Spearman correlation analysis revealed that Spearman's rho (ρ) values between the MVD and peak intensity (PI), between the MVD and area under the curve (AUC), and between the MVD and SPHK1 were > 0.5 (p <0.05), > 0.7 (p <0.01), and > 0.7 (p <0.01), respectively. Conclusion: CEUS is valuable for detecting microangiogenesis within MTrPs, and SPHK1/S1P plays an important role in promoting MTrP tissue microangiogenesis.

4.
PeerJ ; 11: e16588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077437

RESUMEN

Background & Aims: Myofascial trigger points (MTrPs) are highly sensitive irritated points within a tense belt of skeletal muscle, and are the main cause of muscle pain and dysfunction. MTrPs can also cause paraesthesia and autonomic nervous dysfunction. Furthermore, long-term and chronic MTrPs can cause muscle atrophy and even disability, seriously affecting the quality of life and mental health of patients, and increasing the social and economic burden. However, to date, there have been few studies on fibrogenesis and changes in MTrPs. Therefore, this study investigated whether transforming growth factor beta1 (TGF-ß1)-Smad2/3 participates in the formation of MTrPs and how it affects fibrosis using point shear wave elastography. Methods: Forty Sprague‒Dawley rats were randomly divided into the MTrPs group and the control group. Blunt injury combined with eccentric exercise was used to establish an MTrPs model. Electromyography (EMG), haematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM) were used to verify the model. The collagen volume fraction was measured by Masson staining, the protein expression of TGF-ß1 and p-Smad2/3 was measured by Western blotting (WB) and immunohistochemistry (IHC), and the shear wave velocity (SWV) was measured by point shear wave elastography. Results: EMG, H&E and TEM examination indicated that the modelling was successful. The collagen volume fraction and the protein expression of TGF-ß1 and p-Smad2/3 were higher in the MTrPs group than in the control group. The SWV of the MTrPs group was also higher than that of the control group. These differences suggest that MTrPs may exhibit fibrosis. The correlations between the collagen volume fraction and SWV and between the collagen volume fraction and TGF-ß1 were positive. Conclusion: Fibrotic conditions may be involved in the formation of MTrPs. Ultrasound point shear wave elastography and assessment of TGF-ß1 and p-Smad2/3 expression can reflect the degree of MTrPs fibrosis to some extent. Further exploration of the important role of TGF-ß1 and Smad2/3 in the pathogenesis of MTrPs will be of great significance for clinical treatment.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Factor de Crecimiento Transformador beta1 , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Puntos Disparadores , Calidad de Vida , Fibrosis , Colágeno
5.
Biomed Res Int ; 2022: 3470685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440366

RESUMEN

Electroacupuncture (EA) combines traditional Chinese medicine acupuncture theory with modern scientific technology. It is a promising therapy for the treatment of cerebrovascular diseases such as cerebral infarction. A large number of clinical studies have shown that EA promotes recovery of neurological function after cerebral infarction, however, the underlying mechanisms behind its effects remain unclear. We tested whether EA stimulation of the Zusanli (ST36) and Neiguan (PC6) acupoints activates neuroplasticity in rats with ischemic stroke and whether this involves the regulation of axonal regeneration through the mTOR pathway. 24 h after permanent middle cerebral artery occlusion (p-MCAO) in rats, EA treatment was started for 20 min, daily, for 14 days. We found that EA significantly reduced Modified Neurological Severity Scores (mNSS), cerebral infarct volume, and apoptosis of neuronal cells. EA also significantly increased the expression of the neuroplasticity-associated proteins GAP-43 and SYN and upregulated the phosphorylation levels of AKT, mTOR, S6, and PTEN to promote CST axon sprouting in the spinal cord at C1-C4 levels. The positive effects of EA were blocked by the administration of the mTOR inhibitor Rapamycin. In short, we found that EA of the Zusanli (ST36) and Neiguan (PC6) acupoints in p-MCAO rats induced neuroprotective and neuroplastic effects by regulating the mTOR signaling pathway. It promoted neuroplasticity activated by axon regeneration in the contralateral cortex and corticospinal tract. Activation of such endogenous remodeling is conducive to neurological recovery and may help explain the positive clinical effects seen in patients with infarcts.


Asunto(s)
Electroacupuntura , Corteza Motora , Animales , Ratas , Tractos Piramidales , Axones/metabolismo , Ratas Sprague-Dawley , Regeneración Nerviosa , Plasticidad Neuronal , Infarto de la Arteria Cerebral Media/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA