Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
2.
Int J Biol Macromol ; 278(Pt 2): 134628, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128736

RESUMEN

An innovative acidic hydrolysate fingerprinting workflow was proposed for the characterization of Lyophyllum Decastes polysaccharide (LDP) by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The crude polysaccharides were firstly separated and purified by using DE-52 column and the BRT GPC purification system, respectively. The molecular weight and monosaccharide content of homogeneous polysaccharides were ascertained by utilizing HPGPC and ion chromatography separately. Secondly, the linkage of LDP was identified by methylation analysis and 1D/2D NMR spectra. The UPLC-MS/MS was used to scan and identify the acidic hydrolysate products of LDP using the PGC column. The oligosaccharides were collected by chromatography and identified by mass spectrometry. Thirdly, the expression of IL-1ß, IL-6, iNOS, TNF-α and IFNAR-I was measured in order to assess the immunological activity of LDP. Besides, the targeted receptors identification of polysaccharides was performed by screening the expression of TLRs family protein. The results showed that oligosaccharide fragments with different molecular weights can be obtained by partial hydrolysis, which further verified that the structures of LDP polysaccharides was a 1-6-linked ß-glucan. Moreover, the LDP polysaccharide can up-regulate the content of IL-1ß, IL-6, iNOS, TNF-α and IFNAR-I and plays an important immunoregulation role through TLRs family.


Asunto(s)
Peso Molecular , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Ratones , Animales , Células RAW 264.7 , Hidrólisis , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Monosacáridos/análisis , Citocinas/metabolismo
3.
Toxics ; 12(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195695

RESUMEN

Microplastics and heavy metal pollution frequently co-occur in the marine environment, raising concerns about their potentially harmful impacts on marine fish. This study undertook a comprehensive evaluation of the individual and combined stress effects of polylactide microplastics (PLA-MPs) and chromium (Cr) on marine medaka larvae. Following a 14-day exposure to PLA-MPs (100 µg/L) and Cr (50 µg/L), both individually and in combination, significant increases in heart rate and body length were observed. Notably, the combined exposure to PLA-MPs and Cr caused marked histopathological alterations, including shedding, atrophy, and lysis of the intestinal tissues. Furthermore, both individual and combined exposure induced oxidative stress in fish larvae, leading to changes in various enzyme activity indices. Individual exposure to either PLA-MPs or Cr led to anxious behavior in the larvae, whereas combined exposure not only caused anxious behavior but also altered swimming patterns. These findings suggest that combined exposure to PLA-MPs and Cr can exacerbate the toxic effects on marine medaka larvae.

4.
Cancer Biol Ther ; 25(1): 2382531, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39206791

RESUMEN

Mouse orthotopic xenograft tumor models are commonly employed in studies investigating the mechanisms underlying the development and progression of tumors and their preclinical treatment. However, the unavailability of mature and visualized orthotopic xenograft models of nasopharyngeal carcinoma limits the development of treatment strategies for this cancer. The aim of this study was to provide a simple and reliable method for building an orthotopic xenograft model of nasopharyngeal carcinoma. Human nasopharyngeal carcinoma (C666-1-luc) cells, stably expressing the firefly luciferase gene, were injected subcutaneously into the right axilla of BALB/C nude mice. Four weeks later, the resulting subcutaneous tumors were cut into small blocks and grafted into the nasopharynx of immunodeficient BALB/C nude mice to induce tumor formation. Tumor growth was monitored by bioluminescence imaging and small animal magnetic resonance imaging (MRI). The expression of histological and immunological antigens associated with orthotopic xenograft nasopharyngeal carcinoma was analyzed by tissue section analysis and immunohistochemistry (IHC). A visualized orthotopic xenograft nasopharyngeal carcinoma model was successfully developed in this study. Luminescence signal detection, micro-MRI, and hematoxylin and eosin staining revealed the successful growth of tumors in the nasopharynx of the nude mice. Moreover, IHC analysis detected cytokeratin (CK), CK5/6, P40, and P63 expression in the orthotopic tumors, consistent with the reported expression of these antigens in human nasopharyngeal tumors. This study established a reproducible, visual, and less lethal orthotopic xenograft model of nasopharyngeal carcinoma, providing a platform for preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Humanos , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/diagnóstico por imagen , Ratones , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/genética , Línea Celular Tumoral , Ratones Endogámicos BALB C , Carcinoma/patología , Carcinoma/genética , Carcinoma/metabolismo , Imagen por Resonancia Magnética/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Xenoinjertos , Mediciones Luminiscentes/métodos
5.
Front Genet ; 15: 1423213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993478

RESUMEN

Lactate, a metabolic byproduct, has gained recognition as a highly influential signaling molecule. Lactylation, an emerging form of post-translational modification derived from lactate, plays a crucial role in numerous cellular processes such as inflammation, embryonic development, tumor proliferation, and metabolism. However, the precise molecular mechanisms through which lactylation governs these biological functions in both physiological and pathological contexts remain elusive. Hence, it is imperative to provide a comprehensive overview of lactylation in order to elucidate its significance in biological processes and establish a foundation for forthcoming investigations. This review aims to succinctly outline the process of lactylation modification and the characterization of protein lactylation across diverse organisms. Additionally, A summary of the regulatory mechanisms of lactylation in cellular processes and specific diseases is presented. Finally, this review concludes by delineating existing research gaps in lactylation and proposing primary directions for future investigations.

6.
Mol Carcinog ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056517

RESUMEN

Many studies have shown that tumor cells that survive radiotherapy are more likely to metastasize, but the underlying mechanism remains unclear. Here we aimed to identify epithelial-mesenchymal transition (EMT)-related key genes, which associated with prognosis and radiosensitivity in rectal cancer. First, we obtained differentially expressed genes by analyzing the RNA expression profiles of rectal cancer retrieved from The Cancer Genome Atlas database, EMT-related genes, and radiotherapy-related databases, respectively. Then, Lasso and Cox regression analyses were used to establish an EMT-related prognosis model (EMTPM) based on the identified independent protective factor Fibulin5 (FBLN5) and independent risk gene EHMT2. The high-EMTPM group exhibited significantly poorer prognosis. Then, we evaluated the signature in an external clinical validation cohort. Through in vivo experiments, we further demonstrated that EMTPM effectively distinguishes radioresistant from radiosensitive patients with rectal cancer. Moreover, individuals in the high-EMTPM group showed increased expression of immune checkpoints compared to their counterparts. Finally, pan-cancer analysis of the EMTPM model also indicated its potential for predicting the prognosis of lung squamous cell carcinoma and breast cancer patients undergoing radiotherapy. In summary, we established a novel predictive model for rectal cancer prognosis and radioresistance based on FBLN5 and EHMT2 expressions, and suggested that immune microenvironment may be involved in the process of radioresistance. This predictive model could be used to select management strategies for rectal cancer.

7.
Nat Commun ; 15(1): 6303, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060230

RESUMEN

Chromosome rearrangements may distort 3D chromatin architectures and thus change gene regulation, yet how 3D chromatin structures evolve in insects is largely unknown. Here, we obtain chromosome-level genomes for four butterfly species, Graphium cloanthus, Graphium sarpedon, Graphium eurypylus with 2n = 30, 40, and 60, respectively, and Papilio bianor with 2n = 60. Together with large-scale Hi-C data, we find that inter-chromosome rearrangements very rarely disrupted the pre-existing 3D chromatin structure of ancestral chromosomes. However, some intra-chromosome rearrangements changed 3D chromatin structures compared to the ancestral configuration. We find that new TADs and subTADs have emerged across the rearrangement sites where their adjacent compartments exhibit uniform types. Two intra-chromosome rearrangements altered Rel and lft regulation, potentially contributing to wing patterning differentiation and host plant choice. Notably, butterflies exhibited chromatin loops between Hox gene cluster ANT-C and BX-C, unlike Drosophila. Our CRISPR-Cas9 experiments in butterflies confirm that knocking out the CTCF binding site of the loops in BX-C affected the phenotypes regulated by Antp in ANT-C, resulting in legless larva. Our results reveal evolutionary patterns of insect 3D chromatin structures and provide evidence that 3D chromatin structure changes can play important roles in the evolution of traits.


Asunto(s)
Mariposas Diurnas , Cromatina , Evolución Molecular , Genoma de los Insectos , Animales , Mariposas Diurnas/genética , Cromatina/metabolismo , Cromatina/genética , Reordenamiento Génico/genética , Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética
8.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038938

RESUMEN

With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.


Asunto(s)
Envejecimiento , Suplementos Dietéticos , Microbioma Gastrointestinal , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Humanos , Anciano , Femenino , Masculino , Anciano de 80 o más Años , Persona de Mediana Edad , Lactobacillus/genética , Metagenómica/métodos , Bifidobacterium
9.
Int J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954658

RESUMEN

BACKGROUND: Tibial cortex transverse transport (TTT) surgery has become an ideal treatment for patients with type 2 severe diabetic foot ulcerations (DFUs) while conventional treatments are ineffective. Based on our clinical practice experience, the protective immune response from TTT surgery may play a role against infections to promote wound healing in patients with DFUs. Therefore, this research aimed to systematically study the specific clinical efficacy and the mechanism of TTT surgery. MATERIALS AND METHODS: Between June 2022 and September 2023, 68 patients with type 2 severe DFUs were enrolled and therapized by TTT surgery in this cross-sectional and experimental study. Major clinical outcomes including limb salvage rate and antibiotics usage rate were investigated. Ten clinical characteristics and laboratory features of glucose metabolism and kidney function were statistically analyzed. Blood samples from 6 key time points of TTT surgery were collected for label-free proteomics and clinical immune biomarker analysis. Besides, tissue samples from 3 key time points were for spatially resolved metabolomics and transcriptomics analysis, as well as applied to validate the key TTT-regulated molecules by RT-qPCR. RESULTS: Notably, 64.7% of patients did not use antibiotics during the entire TTT surgery. TTT surgery can achieve a high limb salvage rate of 92.6% in patients with unilateral or bilateral DFUs. Pathway analysis of a total of 252 differentially expressed proteins (DEPs) from the proteomic revealed that the immune response induced by TTT surgery at different stages was first comprehensively verified through multi-omics combined with immune biomarker analysis. The function of upward transport was activating the systemic immune response, and wound healing occurs with downward transport. The spatial metabolic characteristics of skin tissue from patients with DFUs indicated downregulated levels of stearoylcarnitine and the glycerophospholipid metabolism pathway in skin tissue from patients with severe DFUs. Finally, the expressions of PRNP (prion protein) to activate the immune response, PLCB3 (PLCB3, phospholipase C beta 3) and VE-cadherin to play roles in neovascularization, and PPDPF (pancreatic progenitor cell differentiation and proliferation factor), LAMC2 (laminin subunit gamma 2) and SPRR2G (small proline rich protein 2G) to facilitate the developmental process mainly keratinocyte differentiation were statistically significant in skin tissues through transcriptomic and RT-qPCR analysis. CONCLUSION: Tibial cortex transverse transport (TTT) surgery demonstrates favorable outcomes for patients with severe type 2 DFUs by activating a systemic immune response, contributing to anti-infection, ulcer recurrence, and the limb salvage rate for unilateral or bilateral DFUs. The specific clinical immune responses, candidate proteins, genes, and metabolic characteristics provide directions for in-depth mechanistic research on TTT surgery. Further research and public awareness are needed to optimize TTT surgery in patients with severe type 2 DFUs.

10.
Mol Ther Nucleic Acids ; 35(3): 102246, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39027419

RESUMEN

Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.

11.
Open Life Sci ; 19(1): 20220890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911926

RESUMEN

Adverse cardiac mechanical remodeling is critical for the progression of heart failure following myocardial infarction (MI). We previously demonstrated the involvement of RIP3-mediated necroptosis in the loss of functional cardiomyocytes and cardiac dysfunction post-MI. Herein, we investigated the role of RIP3 in NOD-like receptor protein 3 (NLRP3)-mediated inflammation and evaluated the effects of RIP3 knockdown on myocardial mechanics and functional changes after MI. Our findings revealed that mice with MI for 4 weeks exhibited impaired left ventricular (LV) myocardial mechanics, as evidenced by a significant decrease in strain and strain rate in each segment of the LV wall during both systole and diastole. However, RIP3 knockdown ameliorated cardiac dysfunction by improving LV myocardial mechanics not only in the anterior wall but also in other remote nonischemic segments of the LV wall. Mechanistically, knockdown of RIP3 effectively inhibited the activation of the nuclear factor kappa-B (NF-κB)/NLRP3 pathway, reduced the levels of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in the heart tissues, and mitigated adverse cardiac remodeling following MI. These results suggest that downregulation of RIP3 holds promise for preventing myocardial inflammation and cardiac mechanical remodeling following MI by regulating the NF-κB/NLRP3 pathway.

12.
Sci Rep ; 14(1): 13364, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862597

RESUMEN

This study aims to take higher-education students as examples to understand and compare artistic and engineering mindsets in creative processes using EEG. Fifteen Master of Fine Arts (MFA) visual arts and fifteen Master of Engineering (MEng) design engineering students were recruited and asked to complete alternative uses tasks wearing an EEG headset. The results revealed that (1) the engineering-mindset students responded to creative ideas faster than artistic-mindset students. (2) Although in creative processes both artistic- and engineering-mindset students showed Theta, Alpha, and Beta wave activity, the active brain areas are slightly different. The active brain areas of artistic-mindset students in creative processes are mainly in the frontal and occipital lobes; while the whole brain (frontal, oriental, temporal, and occipital lobes) was active in creative processes of engineering-mindset students. (3) During the whole creative process, the brain active level of artistic-mindset students was higher than that of engineering-mindset students. The results of this study fills gaps in existing research where only active brain areas and band waves were compared between artistic- and engineering-mindset students in creative processes. For quick thinking in terms of fluency of generating creative ideas, engineering students have an advantage in comparison to those from the visual arts. Also, the study provided more evidence that mindset can affect the active levels of the brain areas. Finally, this study provides educators with more insights on how to stimulate students' creative ability.


Asunto(s)
Creatividad , Electroencefalografía , Ingeniería , Estudiantes , Humanos , Ingeniería/educación , Femenino , Masculino , Adulto Joven , Encéfalo/fisiología , Adulto , Arte
13.
ACS Sens ; 9(6): 3096-3104, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753414

RESUMEN

Lateral flow assays (LFAs) are currently the most popular point-of-care diagnostics, rapidly transforming disease diagnosis from expensive doctor checkups and laboratory-based tests to potential on-the-shelf commodities. Yet, their sensitive element, a monoclonal antibody, is expensive to formulate, and their long-term storage depends on refrigeration technology that cannot be met in resource-limited areas. In this work, LCB1 affibodies (antibody mimetic miniproteins) were conjugated to bovine serum albumin (BSA) to afford a high-avidity synthetic capture (LCB1-BSA) capable of detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and virus like particles (VLPs). Substituting the monoclonal antibody 2B04 for LCB1-BSA (stable up to 60 °C) significantly improved the thermal stability, shelf life, and affordability of plasmonic-fluor-based LFAs (p-LFAs). Furthermore, this substitution significantly improved the sensitivity of p-LFAs toward the spike protein and VLPs with precise quantitative ability over 2 and 3 orders of magnitude, respectively. LCB1-BSA sensors could detect VLPs at 100-fold lower concentrations, and this improvement, combined with their robust nature, enabled us to develop an aerosol sampling technology to detect aerosolized viral particles. Synthetic captures like LCB1-BSA can increase the ultrasensitivity, availability, sustainability, and long-term accuracy of LFAs while also decreasing their manufacturing costs.


Asunto(s)
Aerosoles , Antígenos Virales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Aerosoles/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Antígenos Virales/análisis , Antígenos Virales/inmunología , Albúmina Sérica Bovina/química , COVID-19/diagnóstico , COVID-19/virología , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Inmunoensayo/métodos , Temperatura , Límite de Detección
14.
Cell Rep ; 43(6): 114306, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38819989

RESUMEN

Gut Akkermansia muciniphila (Akk) has been implicated in impacting immunotherapy or oncogenesis. This study aims to dissect the Akk-associated tumor immune ecosystem (TIME) by single-cell profiling coupled with T cell receptor (TCR) sequencing. We adopted mouse cancer models under anti-PD-1 immunotherapy, combined with oral administration of three forms of Akk, including live Akk, pasteurized Akk (Akk-past), or its membrane protein Amuc_1100 (Amuc). We show that live Akk is most effective in activation of CD8 T cells by rescuing the exhausted type into cytotoxic subpopulations. Remarkably, only live Akk activates MHC-II-pDC pathways, downregulates CXCL3 in Bgn(+)Dcn(+) cancer-associated fibroblasts (CAFs), blunts crosstalk between Bgn(+)Dcn(+) CAFs and PD-L1(+) neutrophils by a CXCL3-PD-L1 axis, and further suppresses the crosstalk between PD-L1(+) neutrophils and CD8 T cells, leading to the rescue of exhausted CD8 T cells. Together, this comprehensive picture of the tumor ecosystem provides deeper insights into immune mechanisms associated with gut Akk-dependent anti-PD-1 immunotherapy.


Asunto(s)
Akkermansia , Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores CXCR3/metabolismo , Microambiente Tumoral , Neoplasias/inmunología , Neoplasias/terapia
15.
Cell Prolif ; : e13663, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803043

RESUMEN

Macrophage pyroptosis is of key importance to host defence against pathogen infections and may participate in the progression and recovery of periodontitis. However, the role of pyroptotic macrophages in regulating periodontal ligament stem cells (PDLSCs), the main cell source for periodontium renewal, remains unclear. First, we found that macrophage pyroptosis were enriched in gingiva tissues from periodontitis patients compared with those of healthy people through immunofluorescence. Then the effects of pyroptotic macrophages on the PDLSC osteogenic differentiation were investigated in a conditioned medium (CM)-based coculture system in vitro. CM derived from pyroptotic macrophages inhibited the osteogenic differentiation-related gene and protein levels, ALP activity and mineralized nodule formation of PDLSCs. The osteogenic inhibition of CM was alleviated when pyroptosis was inhibited by VX765. Further, untargeted metabolomics showed that glutamate limitation may be the underlying mechanism. However, exogenous glutamate supplementation aggravated the CM-inhibited osteogenic differentiation of PDLSCs. Moreover, CM increased extracellular glutamate and decreased intracellular glutamate levels of PDLSCs, and enhanced the gene and protein expression levels of system xc - (a cystine/glutamate antiporter). After adding cystine to CM-based incubation, the compromised osteogenic potency of PDLSCs was rescued. Our data suggest that macrophage pyroptosis is related to the inflammatory lesions of periodontitis. Either pharmacological inhibition of macrophage pyroptosis or nutritional supplements to PDLSCs, can rescue the compromised osteogenic potency caused by pyroptotic macrophages.

16.
World J Gastrointest Oncol ; 16(4): 1296-1308, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660646

RESUMEN

BACKGROUND: Preoperative knowledge of mutational status of gastrointestinal stromal tumors (GISTs) is essential to guide the individualized precision therapy. AIM: To develop a combined model that integrates clinical and contrast-enhanced computed tomography (CE-CT) features to predict gastric GISTs with specific genetic mutations, namely KIT exon 11 mutations or KIT exon 11 codons 557-558 deletions. METHODS: A total of 231 GIST patients with definitive genetic phenotypes were divided into a training dataset and a validation dataset in a 7:3 ratio. The models were constructed using selected clinical features, conventional CT features, and radiomics features extracted from abdominal CE-CT images. Three models were developed: ModelCT sign, modelCT sign + rad, and model CTsign + rad + clinic. The diagnostic performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis and the Delong test. RESULTS: The ROC analyses revealed that in the training cohort, the area under the curve (AUC) values for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic for predicting KIT exon 11 mutation were 0.743, 0.818, and 0.915, respectively. In the validation cohort, the AUC values for the same models were 0.670, 0.781, and 0.811, respectively. For predicting KIT exon 11 codons 557-558 deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.720 for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the same models were 0.610, 0.782, and 0.795, respectively. Based on the decision curve analysis, it was determined that the modelCT sign + rad + clinic had clinical significance and utility. CONCLUSION: Our findings demonstrate that the combined modelCT sign + rad + clinic effectively distinguishes GISTs with KIT exon 11 mutation and KIT exon 11 codons 557-558 deletions. This combined model has the potential to be valuable in assessing the genotype of GISTs.

17.
Front Oncol ; 14: 1334592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665948

RESUMEN

Cholangiocarcinoma is an aggressive and heterogeneous malignancy originating from the bile duct epithelium. It is associated with poor prognosis and high mortality. The global incidence of cholangiocarcinoma is rising, and there is an urgent need for effective early diagnosis and treatment strategies to reduce the burden of this devastating tumor. Small extracellular vesicles, including exosomes and microparticles, are nanoscale vesicles formed by membranes that are released both normally and pathologically from cells, mediating the intercellular transfer of substances and information. Recent studies have demonstrated the involvement of small extracellular vesicles in numerous biological processes, as well as the proliferation, invasion, and metastasis of tumor cells. The present review summarizes the tumorigenic roles of small extracellular vesicles in the cholangiocarcinoma microenvironment. Owing to their unique composition, accessibility, and stability in biological fluids, small extracellular vesicles have emerged as ideal biomarkers for use in liquid biopsies for diagnosing and outcome prediction of cholangiocarcinoma. Specific tissue tropism, theoretical biocompatibility, low clearance, and strong biological barrier penetration of small extracellular vesicles make them suitable drug carriers for cancer therapy. Furthermore, the potential value of small extracellular vesicle-based therapies for cholangiocarcinoma is also reviewed.

18.
BMJ Open ; 14(4): e084496, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670615

RESUMEN

INTRODUCTION: Whether gastric cancer (GC) patients with deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) benefit from perioperative (neoadjuvant and/or adjuvant) chemotherapy is controversial. This protocol delineates the planned scope and methods for a systematic review and meta-analysis that aims to compare the efficacy of perioperative chemotherapy with surgery alone in resectable dMMR/MSI-H GC patients. METHODS AND ANALYSIS: This study protocol is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols-P guideline. PubMed, Embase, Cochrane (CENTRAL), and the Web of Science databases will be searched, supplemented by a secondary screening of relevant records. Both randomised controlled trials and non-randomised studies will be included in this study. The primary and secondary outcomes under scrutiny will be overall survival, disease-free survival and progression-free survival. Two reviewers will independently screen studies, extract data and assess the risk of bias. We will analyse different treatment settings (eg, neoadjuvant or adjuvant or combined as perioperative chemotherapies) separately and conduct sensitivity analyses. ETHICS AND DISSEMINATION: No ethics approval is required for this systematic review and meta-analysis, as no individual patient data will be collected. The findings of our study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023494276.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Neoplasias Gástricas , Revisiones Sistemáticas como Asunto , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Quimioterapia Adyuvante , Terapia Neoadyuvante/métodos , Metaanálisis como Asunto , Proyectos de Investigación
19.
Pathol Res Pract ; 257: 155313, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642509

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a highly heterogeneous malignancy, and patients often have different responses to treatment. In this study, the genetic characteristics related to exosome formation and secretion procedure were used to predict chemoresistance and guide the individualized treatment of patients. METHODS: Firstly, seven microarray datasets in Gene Expression Omnibus (GEO) and RNA-Seq dataset from the Cancer Genome Atlas (TCGA) were used to analysis the transcriptome profiles and associated characteristics of CRC patients. Then, a predictive model based on gene features linked to exosome formation and secretion was created and validated using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning. Finally, we evaluated the model using chemoresistant/chemosensitive cells and tissues by immunofluorescence (IF), western blot (WB), quantitative real-time PCR (qRT-PCR) and immunocytochemistry (IHC) experiments, and the predictive value of integrated model in the clinical validation cohort were performed by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves analyses. RESULTS: We established a risk score signature based on three genes related to exosome secretion in CRC. Better Overall Survival (OS) and greater chemosensitivity were seen in the low-risk group, whereas the high-risk group exhibited chemoresistance and a subpar response to immune checkpoint blockade (ICB) therapy. Higher expression of the model genes EXOC2, EXOC3 and STX4 were observed in chemoresistant cells and specimens. The AUC of 5-year disease-free survival (DFS) was 0.804. Compared with that in the low-risk group, patients' DFS was found to be significantly worse in the high-risk group. CONCLUSIONS: In summary, the gene signature related to exosome formation and secretion could reliably predict patients' chemosensitivity and ICB treatment response, which providing new independent biomarkers for the treatment of CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Exosomas , Transcriptoma , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/genética , Exosomas/genética , Exosomas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Anciano , Regulación Neoplásica de la Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Pronóstico
20.
Immunobiology ; 229(3): 152805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669865

RESUMEN

Tumor-associated macrophages (TAMs), one of the major immune cell types in colorectal cancer (CRC) tumor microenvironment (TME), play indispensable roles in immune responses against tumor progression. In this study, we aimed to know whether the extensive inter and intra heterogeneity of TAMs contributes to the clinical outcomes and indications for immune checkpoint blockade (ICB) in CRC. We used single-cell RNA sequencing (scRNA-Seq) data from 60 CRC patients and charactrized TAMs based on anatomic locations, tumor regions, stages, grades, metastatic status, MSS/MSI classification and pseudotemporal differentiation status. We then defined a catalog of 21 gene modules that determine macrophage status, and identified 7 of them as relevant to clinical outcomes and 11 as indications for ICB therapy. On this basis, we constructed a unique TAM subgroup profile, aiming to find features that may be highly responsive to immunotherapy for the CRC with poor prognosis under conventional treatment. This TAM subpopulation is enriched in tumors and is associated with poor prognosis, but exhibits a high immunotherapy response signature (HIM TAM). Further spatial transcriptome analysis and ligand-receptor interaction analysis confirmed that HIM TAM is involved in shaping TIME, especially the regulation of T cells. Our study provides insights into different TAM subtypes, highlights the importance of TAM heterogeneity in relation to patient prognosis and immunotherapy response, and reveals potential immunotherapy strategies based on TAM characteristics for CRC that does not respond well to conventional therapy.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Microambiente Tumoral/inmunología , Pronóstico , Inmunoterapia/métodos , Resultado del Tratamiento , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Transcriptoma , Análisis de la Célula Individual , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA