Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 404(Pt B): 134672, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323025

RESUMEN

This study aimed to identify novel pancreatic lipase (PL) inhibitors using affinity ultrafiltration combined with spectroscopy and molecular docking. Cyanidin-3-O-glucoside (C3G; IC50: 0.268 mg/mL) and catechin (IC50: 0.280 mg/mL) were shown to be potent PL inhibitors extracted from black rice and adzuki bean coat extracts. Isobologram analysis revealed that the combined use of C3G and catechin at a ratio of 2:3 had a remarkable synergistic effect (IC50 of the mixture: 0.201 mg/mL). The inhibitory mechanism of C3G-catechin mixture was of mixed type. The C3G-catechin mixture had a great impact on PL secondary structures. Molecular docking analysis further demonstrated that these polyphenols formed hydrophobic interactions and hydrogen bonds with amino acid residues in the binding pocket of PL. Collectively, C3G and catechin were shown to inhibit PL in a synergistic manner and can be potentially used for the development of food supplements for obesity prevention.


Asunto(s)
Catequina , Catequina/farmacología , Catequina/química , Lipasa , Simulación del Acoplamiento Molecular , Glucósidos/química , Antocianinas/química
2.
Food Funct ; 13(17): 8892-8906, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35924967

RESUMEN

Cytoplasmic lipid droplets (LDs), which are remarkably dynamic, neutral lipid storage organelles, play fundamental roles in lipid metabolism and energy homeostasis. Both the dynamic remodeling of LDs and LD-mitochondrion interactions in adipocytes are effective mechanisms to ameliorate obesity and related comorbidities. Zeaxanthin (ZEA) is a natural carotenoid and has beneficial effects on anti-obesity. However, the underlying mechanisms of ZEA on LD modulation are still unclear. In the present study, ZEA efficiently inhibited LD accumulation and attenuated adipocyte proliferation by arresting the cell cycle. ZEA drove transcriptional alterations to reprogram a lipid oxidative metabolism phenotype in mature 3T3-L1 adipocytes. ZEA significantly decreased the TAG and FA content and modulated the dynamic alterations of LDs by upregulating the expression of lipases and the LD-mitochondrion contact site protein, perilipin 5 (PLIN5), and downregulating the LD fusion protein, fat-specific protein 27 (FSP27). Mechanistically, ZEA stimulated LD remodeling and ameliorated mitochondrial defects caused by large and unilocular LD accumulation by activating ß3-adrenergic receptor (ß3-AR) signaling. Furthermore, the knockdown of PLIN5 impaired the LD-mitochondrion interactions, thereby disrupting the role of ZEA in promoting mitochondrial fatty acid oxidation and respiratory chain operation. Collectively, the present study demonstrates that ZEA induces LD structural and metabolic remodeling by activating ß3-AR signaling and enhances PLIN5-mediated LD-mitochondrion interactions in hypertrophic white adipocytes, thereby enhancing oxidative capacity, and has the potential as a nutritional intervention for the prevention and treatment of obesity and associated metabolic syndrome.


Asunto(s)
Gotas Lipídicas , Perilipina-5 , Receptores Adrenérgicos beta 3/metabolismo , Adipocitos/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Mitocondrias/metabolismo , Obesidad/metabolismo , Perilipina-2/metabolismo , Perilipina-5/metabolismo , Receptores Adrenérgicos/metabolismo , Zeaxantinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA