Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 179: 113981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342530

RESUMEN

Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.


Asunto(s)
Colorantes de Alimentos , Gardenia , Extractos Vegetales , Colorantes
2.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903257

RESUMEN

Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.


Asunto(s)
Brassica napus , Brassica rapa , Aceite de Brassica napus/metabolismo , Proteómica , Macrófagos/metabolismo , Células Espumosas/metabolismo , Brassica napus/metabolismo , Brassica rapa/química , Antiinflamatorios/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
3.
Food Chem ; 405(Pt B): 134867, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36435120

RESUMEN

The oxidative stability of pecan kernels and its relationship with the in-vitro behavior of oleosomes during storage were analyzed. The oxidation index of oil extracted from pecans stored for 20 days increased significantly. At the same time oleosomes in pecans were damaged, indicating a relationship between oleosomes and the oxidative stability of pecans. The rupture of oleosomes increases contact between oil and oxygen leading to an acceleration of oil oxidation. Further analysis of oleosomes showed that their oil content decreased during storage while their particle size increased significantly. It is possible that hydrolysis of endogenous proteins, especially oleosins, was responsible for the rupture of oleosomes, as seen by Tricine-SDS-PAGE. As a result, the content of free fatty acids and oxidized triacylglycerols in oleosomes increased, whereas the polyunsaturated fatty acids content decreased significantly. An in-vitro model confirmed that rupture of oleosomes led to oil leakage and thus accelerated endogenous oil oxidation.


Asunto(s)
Carya , Gotas Lipídicas , Metabolismo de los Lípidos , Ácidos Grasos no Esterificados , Triglicéridos
4.
Front Nutr ; 9: 981176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245524

RESUMEN

In the recent years, edible brown seaweed, Undaria pinnatifida, has presented beneficial effects, which may be correlated with this species containing major bioactive compounds, such as carotenoids, fatty acids, and phytosterols. Marine carotenoid fucoxanthin is abundantly present in edible Undaria pinnatifida and features strong bioactive activities. The stem of Undaria pinnatifida is very hard to gnaw off and cannot be swallowed; therefore, it is usually discarded as waste, making it an environmental issue. Hence, making full use of the waste stem of Undaria pinnatifida is an urgent motivation. The present study aims to explore the optimal preparation technology of fucoxanthin from Undaria pinnatifida stems using supercritical carbon dioxide methods and provides approaches for the extraction and preparation of bioactive compounds from a waste seaweed part. With the comprehensive optimization conditions applied in this study, the experimental yield of fucoxanthin agreed closely with the predicted value by > 99.3%. The potential of α-amylase and glucoamylase to inhibit bioactive compounds was evaluated. The results demonstrated that the inhibition activity (IC50 value) of α-amylase (0.1857 ± 0.0198 µg/ml) and glucoamylase (0.1577 ± 0.0186 µg/ml) varied with extraction conditions due to the different contents of bioactive components in the extract, especially fucoxanthin (22.09 ± 0.69 mg/g extract). Therefore, this study confirmed supercritical fluid extraction technology to be a useful sample preparation method, which can effectively be used to prepare fucoxanthin from waste marine resources. This method can potentially be applied in functional food and related industries.

5.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234684

RESUMEN

Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.


Asunto(s)
Aflatoxinas , Técnicas Biosensibles , Aflatoxina B1 , Aflatoxinas/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos
6.
Front Nutr ; 9: 1110615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712503

RESUMEN

The main symptoms of diabetes are hyperglycemia and insulin resistance. The inhibition of the starch digestion enzymes could effectively regulate starch digestion and glucose absorption, thereby slowing or treating the symptoms of postprandial hyperglycemia. Herein, we used fucoxanthin isolated from Undaria pinnatifida stems, as α-amylase inhibitor, and monitored the interactions of both biomolecules by using quartz crystal microbalance-admittance (QCM-A) instrument. All the processes of α-amylase hydrolysis of starch were also dynamically tracked by using amylose-immobilized QCM technology. In our work, we found that the kinetic parameter (k off, k on, and k cat) values obtained by the QCM-A analysis were relatively consistent compared to the kinetic parameter values obtained by the conventional Michaelis-Menten analysis. For the inhibitory reactions, the results showed that fucoxanthin significantly reduced the activity of α-amylase in a dose-dependent manner. The QCM-A technology shown to be an excellent approach in obtaining comprehensive and accurate kinetic parameters, thereby providing real and accurate data for kinetic studies. It is helpful to clarify the mechanism of action of fucoxanthin on α-amylase, which further proved the potential of fucoxanthin to improve and treat postprandial hyperglycemia.

7.
Mar Drugs ; 13(6): 3422-42, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26035021

RESUMEN

The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.


Asunto(s)
Antiinfecciosos/farmacología , Antihipertensivos/farmacología , Antioxidantes/farmacología , Xantófilas/farmacología , Antiinfecciosos/aislamiento & purificación , Antihipertensivos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Dióxido de Carbono/química , Ácidos Grasos/aislamiento & purificación , Laminaria/química , Fenoles/aislamiento & purificación , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Sargassum/química , Solventes/química , Temperatura , Xantófilas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA