Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(28): 6827-6839, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38904191

RESUMEN

Coating metal structures with a protective material is a popular strategy to prevent their deterioration due to corrosion. However, maintaining the barrier properties of coatings after their mechanical damage is challenging. Herein, we prepared multifunctional coatings with self-healing ability to conserve their anticorrosion performance after damage. The coating was formed by blending synthesized redox-responsive copolymers with the ability to release a corrosion inhibitor upon the onset of corrosion with synthesized self-healing polyurethanes containing disulfide bonds. The corrosion rate of steel substrates coated with a blend is approximately 24 times lower than that of steel coated with only self-healing polyurethane. An exceptional healing efficiency, as high as 95%, is obtained after mechanical damage. The antibiofouling property against bacterial and microalgal attachments on coatings is facilitated by the repellent characteristic of fluorinated segments and the biocidal activity of the inhibitor moieties in the copolymer.


Asunto(s)
Incrustaciones Biológicas , Corrosión , Incrustaciones Biológicas/prevención & control , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Poliuretanos/química , Poliuretanos/farmacología , Poliuretanos/síntesis química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/síntesis química
2.
Adv Mater ; 35(47): e2300101, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36939547

RESUMEN

Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.

3.
Macromol Rapid Commun ; 43(23): e2200554, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35996274

RESUMEN

Transparent soft materials are widely used in applications ranging from packaging to flexible displays, wearable devices, and optical lenses. Nevertheless, soft materials are susceptible to mechanical damage, leading to functional failure and premature disposal. Herein, a transparent self-healing elastomer that is able to repair the polymer network via exchange reactions of dynamic disulfide bonds is introduced. Due to its self-healing ability, the mechanical properties of the elastomer can be recovered as well as its transparency after multiple cycles of abrasion and healing. The self-healing polymer is fabricated into 3D structures by folding or modular origami assembly of planar self-healing polymer sheets. The 3D polymer objects are employed as storage containers of solid and liquid substances, reactors for photopolymerization, and cuvettes for optical measurements (exhibiting superior properties to those of commercial cuvettes). These dynamic polymers show outstanding mechanical, optical, and recycling properties that could potentially be further adapted in adaptive smart packaging, reconfigurable materials, optical devices, and recycling of elastomers.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Elastómeros/química , Polímeros/química
4.
Adv Sci (Weinh) ; 7(13): 1903785, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32670754

RESUMEN

Self-healing materials are explored for restoring mechanical, electrical, and chemical properties. Inspired by the process of tattooing on human skin, a method for engraving non-permanent or permanent messages on plastics is developed. A self-healing polymer containing dynamic disulfide bonds is employed as substrate for encryption of written messages. The polymer is engraved with a dye solution which is subsequently covered by the polymer matrix upon activation with temperature increase. The dye is then located at the subsurface of the substrate so that the information cannot be removed easily by wear or extraction with solvents. Therefore, self-healing polymers can be applied as sustainable substrates for reversibly and irreversibly engraving information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA