RESUMEN
RATIONALE: Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE: We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS: Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS: Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.
Asunto(s)
Endotelio Vascular/metabolismo , Hipertensión Pulmonar/metabolismo , Pulmón/irrigación sanguínea , MicroARNs/metabolismo , Animales , Trasplante de Médula Ósea , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/fisiopatología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/sangre , MicroARNs/genética , Parabiosis , Transducción de SeñalRESUMEN
The central carbon metabolic system is the upstream energy source for microbial fermentation. In addition, it is a master switch for increasing the production of metabolites and an important part of the microbial metabolic network. Investigation into the relationship between genes, environmental factors, and metabolic networks is a main focus of systems biology, which significantly impacts research in biochemistry, metabolic engineering, and synthetic biology. To this end, the central carbon metabolic flux under a variety of growth conditions or using strains with various genetic modifications was previously measured in Saccharomyces cerevisiae using 13C tracer technology. However, the measured values were not integrated and investigated further. In this study, we collected and analyzed the metabolic flux rates of the central carbon metabolic system in S. cerevisiae measured in recent studies. We carried out preliminary analyses of flux values of each pathway, performed regression analyses on relationship between different fluxes, and extracted principal component factors of the flux variables. Based on the results, the general characteristics of pathway flux distribution were clustered and explored, and the effects of environmental and genetic factors on the flux distribution were analyzed. Furthermore, this study explored the relationship between similarity in the enzyme's transcriptional regulation and the correlations in the enzyme's reaction flux. Our results provide a foundation for further studies on the control of the central carbon metabolic flux and facilitate the search for targets in metabolic engineering research.