Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 19(37): e2301267, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144442

RESUMEN

Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274 mV to reach 100 mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72 h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from ß to γ phase, thus keeping the Fe-doped NiOOH at the most active state.

2.
Anal Chem ; 93(30): 10697-10703, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34282896

RESUMEN

Quantitative detection of multiple biological small molecules is critical for health evaluation and disease diagnosis. In this study, a microarray chip featuring a bienzyme-immobilized polyaniline nanowire forest on fluorine-doped tin oxide (bienzyme-PANI/FTO) is developed for this purpose. On such a chip, the target molecules are oxidized under the catalysis of their attached oxidases to produce hydrogen peroxide, which further induces the partial oxidation of local PANI nanowires in the presence of horseradish peroxidase (HRP) enzyme. The redox state change of PANI nanowires is monitored by the oblique incident reflectivity difference (OIRD) technique in a real-time and wireless manner, thus allowing for quantitative analysis of the target molecules. As typical model targets, hydrogen peroxide, glucose, lactic acid, and cholesterol are successfully detected with low detection limits, excellent specificities, and broad detection ranges, all of which fully meet the requirements for clinical analysis of human serum samples. Simultaneous detection of multiple targets on an individual chip is further demonstrated using the OIRD scanning mode. Meanwhile, by simple electrochemical reduction of the PANI nanowires, the chip is reusable for more than eight detection cycles without evident decay in its performance. The detection principle of this chip is also universal to other small molecules, and thus, it shows great promise as a valuable device to analyze biological small molecules.


Asunto(s)
Técnicas Biosensibles , Nanocables , Compuestos de Anilina , Bosques , Humanos
3.
ChemSusChem ; 14(2): 730-737, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33225588

RESUMEN

Active electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are decisive for achieving efficient energy conversion from electricity to hydrogen fuel through water electrolysis. In this study, tremella-like Ru-doped Co-V layered double hydroxide nanosheets on Ni Foam (Ru-CoV-LDH@NF) was fabricated by a one-pot solvothermal reaction. As-prepared Ru-CoV-LDH@NF, with a nominal Ru loading of around 51.6 µg cm-2 exhibits excellent bifunctional catalytic activity towards HER and OER in alkaline media. To accomplish a current density of 10 mA cm-2 , it demands 32 mV and 230 mV overpotentials for HER and OER, respectively. The alkali electrolyzer utilizing Ru-CoV-LDH/NF as bifunctional electrocatalyst affords 10 mA cm-2 electrolytic current density at an extremely low cell voltage of 1.50 V, showing excellent performance compared to a Pt/C-RuO2 -based electrolyzer and many other bifunctional electrocatalyst-based ones. The incorporation of Ru changes the morphology of the resultant nanosheets to offer high electrochemical surface areas for electrocatalysis; at the same time, it significantly boosts the intrinsic HER/OER electrocatalytic activity. For HER, the energy barrier of the Volmer step is efficiently reduced upon Ru doping, whereas the Ru dopants optimize the absorption strength of *O intermediates to facilitate the OER process. This work offers a feasible means to optimize the Co-based hydroxide materials for improved electrocatalysis in overall water splitting.

4.
Chemistry ; 26(71): 17091-17096, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-32734617

RESUMEN

An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal-organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm-2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 µg cm-2 . When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm-2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2 -Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.

5.
ACS Appl Mater Interfaces ; 12(14): 16548-16556, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32202754

RESUMEN

Transition metal phosphides (TMPs) demonstrate great potential for hydrogen evolution reaction (HER) electrocatalysis, but their activities need further improvement. Herein we report a novel Au incorporation strategy to boost the HER catalytic performance of CoP. As a proof of concept, heterostructured Au/CoP nanoparticles dispersed on nitrogen-doped carbon with unique porosity, denoted as Au/CoP@NC-3, are synthesized by thermal treatment of Au-nanoparticle-incorporated ZIF-67 precursor. It shows excellent HER activity as well as good durability in acidic and alkaline condition, respectively, greatly outperforming its Au-free analogue, namely, CoP@NC. In-depth analysis suggests that the improved HER activity of Au/CoP@NC-3 is attributed to the presence of Au nanoparticles which enlarge the electrochemical active surface areas and adjust the electronic structure of active CoP species to enhance the water adsorption and optimize H adsorption for the accelerated HER process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA